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G E N E T I C S

Conservation of cis-regulatory codes over half a billion 
years of evolution
Yohey Ogawa1†, Yu Liu1, Connie A. Myers1, Ala Morshedian2, Gordon L. Fain2,  
Alapakkam P. Sampath2, Joseph C. Corbo1*

Identifying homologous cell types across species is essential for understanding cell type evolution. The retina 
is ideal for comparative analysis because its six major cell classes have persisted since the origin of vertebrates 
more than half a billion years ago. Here, we show that the retina’s conserved cellular architecture is mirrored 
by deep conservation of the cis-regulatory codes that govern gene expression. Through single-cell chromatin 
accessibility analysis of lamprey, fish, bird, and mammalian retinas, we demonstrate cross-species conserva-
tion of cis-regulatory codes in all retinal cell classes despite extensive turnover of cis-regulatory regions. Con-
servation manifests as clustering of high-affinity transcription factor binding sites in cell class–specific open 
chromatin regions. Thus, the retina’s cellular Bauplan is controlled by cis-regulatory codes, which predate the 
divergence of extant vertebrates.

INTRODUCTION
The evolutionary origin of cell types is a subject of enduring fascination 
(1–4). To infer the existence of specific cell types in the common an-
cestor of extant vertebrates—a species that lived ~560 million years 
(Ma) ago—it is necessary to compare homologous cell types between 
the two most evolutionarily distant vertebrate taxa: the jawless fishes 
(i.e., lampreys and hagfishes) and the jawed vertebrates (cartilaginous 
and bony fishes, amphibians, reptiles, birds, and mammals). The ver-
tebrate retina is an ideal system for inferring cellular and molecular 
features that existed in the common vertebrate ancestor because its 
basic features—cell classes, connectivity patterns, and function—are 
remarkably conserved among all vertebrate taxa (5–7), including 
between jawed and jawless species (Fig. 1, A and B) (8–10). Nearly 
all vertebrate retinas contain six major cell classes (photoreceptors, 
bipolar cells, horizontal cells, amacrine cells, ganglion cells, and Müller 
glia) (7). Each cell class—with the exception of Müller glia— consists of 
multiple closely related “sister” cell types—expressing divergent sets of 
effector genes but retaining many shared transcriptional regulators—
which arose via duplication and divergence from a single ancestral 
cell type (1, 2, 11). In the course of evolution, individual vertebrate 
species have expanded or contracted the number of cell types within 
each cell class to adapt to specific light environments or lifestyles 
(6, 12, 13). Thus, vertebrate retinas display remarkable cell type 
diversity couched within an evolutionarily stable framework of six 
invariant cell classes.

Cell class– and type–specific transcriptomes are determined by 
the action of transcriptional regulatory networks, which consist of 
hierarchical cascades of transcription factors (TFs) that bind to 
cognate binding sites within cis-regulatory elements (i.e., enhanc-
ers and promoters) to regulate gene expression and determine cell 
type identity (14, 15). A “cis-regulatory code” or “grammar” is the 
particular combination and arrangement of TF binding sites within 

cis-regulatory elements that drives expression in a specific cell type 
or class. In the present study, we sought to determine whether the 
cis-regulatory codes governing retinal class–specific gene expression 
are conserved across vertebrates, including between jawed and jaw-
less species. We find that the architectural invariance of the vertebrate 
retina is mirrored by deep conservation of the underlying cis-regulatory 
codes and that these codes emerged in the common ancestor of extant 
vertebrates more than half a billion years ago.

RESULTS
Single-cell chromatin accessibility profiling of 
vertebrate retinas
To determine the evolutionary antiquity of the cis-regulatory codes 
that govern gene expression in the vertebrate retina, we carried out 
a systematic analysis of TF-binding sites in the retinal cell class–enriched 
open chromatin regions (OCRs) of six diverse vertebrate species 
(Fig. 1). These species inhabit a wide range of photic environments 
and have correspondingly evolved divergent retinal cell type inven-
tories (7, 16). Thus, it is impossible to define one-to-one homology 
relationships for individual cell types across all species. We therefore 
focused our analysis on cell class–specific cis-regulatory codes. To 
accomplish this task, we acquired published retinal single-cell gene 
expression profiling [single-cell RNA sequencing (scRNA-seq)] and 
single-nucleus chromatin accessibility sequencing (snATAC-seq) data 
from two teleost fishes (zebrafish and goldfish) and two placental 
mammals (mouse and human). To broaden our phylogenetic sampling, 
we additionally conducted single-cell analyses on retinas from 
chicken (Gallus gallus) and sea lamprey (Petromyzon marinus), 
a jawless species. We examined these six datasets—generated by dis-
tinct protocols and from diverse sources—using either Signac/Seurat 
or ArchR, depending on whether the data were generated by multiome 
(snRNA-seq + snATAC-seq) or snATAC-seq analysis, respectively. 
After initial preprocessing to remove low-quality cells, we performed 
dimensionality reduction followed by shared nearest neighbor modularity 
optimization–based clustering. For each species, we assigned clusters 
to one of the six retinal cell classes, either based on the expression of 
known class-specific marker genes in those species for which multiome 
data were available (lamprey, zebrafish, and human), or based on 
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chromatin accessibility at the promoters of class-specific marker genes 
in those species for which multiome data were not available (gold-
fish, chicken, and mouse). We removed from the analysis any residual 
clusters that could not be assigned to one of the major retinal cell 
classes. In this way, we identified clusters corresponding to each of 
the six retinal cell classes in all six species, with the exception of chicken 
ganglion cells, which were absent from the snATAC-seq dataset al-
though present in scRNA-seq data (Fig. 1C and fig. S1).

Next, we sought to determine whether our cluster annotations 
are reflective of shared patterns of chromatin accessibility at class-
enriched gene loci. To achieve this goal, we devised a quantitative 
measure of class-specific chromatin accessibility for each of the six 

retinal cell classes. First, we used scRNA-seq data to define evolution-
arily conserved (EC) class-specific “meta-genes” consisting of a set 
of genes that were differentially expressed across cell classes and 
had a high class-specificity index in lamprey and three or more of 
the jawed species (see table S1 and Materials and Methods). We 
then measured chromatin accessibility over the promoter and gene 
body of each gene in the meta-gene and aggregated the values to 
create a single “meta-gene accessibility” score for each of the six cell 
classes in each of the six species (except for chicken ganglion cells; 
see above). We found that in all comparisons, the meta-gene ac-
cessibility score was highest for the expected cell class (Fig. 1D). 
These findings validate our cluster annotations and confirm that 

Fig. 1. Single-nucleus chromatin accessibility profiles for six retinal cell classes in six vertebrate species. (A) A phylogenetic tree of the vertebrate species used in 
this study. Divergence times are estimated on the basis of a published database (66). (B) (Left) Hematoxylin and eosin–stained sections of lamprey and human retina. 
(Right) Schematic of the six major retinal cell classes in vertebrates. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. (C) Single-nucleus ATAC-seq 
profiles of the six indicated species. Retinal cell classes were identified by clustering analysis and visualized in two-dimensional space using the Uniform Manifold Ap-
proximation and Projection (UMAP) method. Cell classes are color-coded as in (B). (D) Violin plots showing the average chromatin accessibility of cell class–enriched 
meta-genes generated from sets of EC marker genes for each cell class in each species (see Materials and Methods). The rows are grouped by species for each snATAC-seq 
dataset, and the columns are grouped by cell class. Cell-class meta-gene enrichment was determined by comparing the cell class exhibiting the highest score for the 
meta-gene with the second-highest scoring cell class. An asterisk indicates an adjusted P value <0.05 (Wilcoxon rank sum test followed by Bonferroni correction). Ma, 
million years.
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class-specific signatures of chromatin accessibility are shared across 
all six species.

Extensive enhancer turnover during vertebrate evolution
Next, we wished to determine whether retinal class–specific cis-
regulatory elements show sequence-level conservation across species. 
cis-regulatory elements typically occur in chromatin regions that are 
selectively open in the cell type(s) in which the element is active. For ex-
ample, we previously showed extensive overlap between photoreceptor-
enriched OCRs and the location of photoreceptor-specific enhancers 
and promoters across the mouse genome (17, 18). We therefore de-
cided to use class-enriched OCRs as a surrogate for class-enriched 
cis-regulatory elements in the present analysis. To quantify the ex-
tent of sequence-level conservation of class-enriched OCRs across 
species, we used single-cell data to create pseudo-bulk ATAC-seq 
profiles for each of the six retinal cell classes in five species: lamprey, 
zebrafish, chicken, mouse, and human (except for chicken ganglion 
cells; see above). We identified class-enriched OCRs for each retinal 
cell class in each species using a test of differential chromatin acces-
sibility (fig. S2; see Materials and Methods). We then used the UCSC 

Genome Browser’s LiftOver utility to map the union of each species’ 
class-enriched OCRs onto all other vertebrate reference genomes 
for which precomputed reciprocal best-hit whole-genome align-
ment files were publicly available. In this way, we quantified “align-
ability” as the percentage of a species’ class-enriched OCRs, which 
could be aligned with the genome of the target species (see Materials 
and Methods for details). We found that sequence alignability of 
retinal class–enriched OCRs progressively decayed with evolution-
ary distance such that beyond ~400 Ma, fewer than 3% of OCRs were 
alignable with the target genome (Fig. 2 and table S2). For example, 
the average alignability at 430 Ma (the distance between ray-finned 
fishes and amniotes) was 1.35%, while the average alignability at 
563 Ma (the distance between jawed and jawless species) was 0.52%. 
We therefore infer that vertebrate cis-regulatory element turnover is 
extensive at great evolutionary distances.

To model the decline in OCR alignability over time, we fitted the 
data with a Gompertz equation, which is often used to model the 
growth or decay of populations. We observed close agreement with 
the model at short (i.e., <50 Ma) and long (>280 Ma) evolutionary 
distances but found major deviations from the model at middle 

Fig. 2. Nearly complete sequence turnover of retinal cell class–enriched OCRs after 400 Ma of evolution. Retinal cell class–enriched chromatin regions in five query 
species (human, mouse, chicken, zebrafish, and lamprey) were mapped onto the genomes of diverse vertebrate species (also see table S2). The x-axis represents the 
evolutionary divergence times between query and target species according to a published database (66). The y-axis indicates the percent of query sequences that can be 
aligned to the target genome. The decay of sequence alignability over evolutionary time was modeled with the Gompertz equation using divergence time as a variable. 
The 95% confidence intervals measured by bootstrap resampling (see Materials and Methods) are shown as blue shading. The query species, when used as targets, are 
labeled and highlighted in red.
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distances (50 to 280 Ma) (Fig. 2 and table S2). The greatest downward 
deviations—indicative of more extensive turnover than predicted by 
the model—were observed in mouse/human-to-mammal comparisons, 
particularly at ~90 Ma (i.e., mouse/human-to-placental comparisons), 
160 Ma (mouse/human-to-marsupial), and 180 Ma (mouse/human-
to-monotreme) (Fig. 2). These deviations are likely attributable to 
accelerated rates of evolution in certain mammalian clades (19, 20). 
Conversely, we observed unexpectedly low rates of OCR turnover in 
chicken-to-bird comparisons (~90 Ma) and chicken-to-alligator/
turtle comparisons (240–260 Ma), while chicken-to-lizard/snake 
comparisons (280 Ma) largely agreed with the model (Fig.  2). 
Despite wide variation in the rates of alignability at middle evolu-
tionary distances, both the data and the model suggest nearly complete 
(i.e., ~99.5%) evolutionary turnover of retinal class–specific cis-
regulatory elements beyond 500 Ma.

Deep conservation of retinal cis-regulatory codes
We and others observed conserved patterns of expression of class-
specific genes despite extensive turnover of the cis-regulatory elements 
controlling their expression (table S1) (7, 9). We therefore hypothesized 
that the underlying cis-regulatory codes might be conserved despite 
an absence of linear sequence conservation. To test this idea, we un-
dertook a detailed comparative analysis of retinal class–specific cis-
regulatory codes. The fundamental building blocks of a cis-regulatory 
code are TF-binding sites. Thus, as a first step toward elucidating the 
retinal codes, we used HOMER (21), a TF-binding site motif discovery 
algorithm, to comprehensively identify motifs enriched within 201–base 
pair (bp) regions centered on the summits of class-specific OCRs of 
six species (the rationale for choosing a 201-bp window is described 
in Materials and Methods). All existing motif databases derive from 
in-depth study of a small number of species. Thus, to avoid biases that 
might be introduced by focusing on “known” motifs, we used HOMER to 
detect de novo motifs. HOMER identifies enriched motifs by compar-
ing an “experimental” set of target sequences with a set of control se-
quences. We therefore used class-enriched OCRs as our experimental 
dataset and a set of OCRs broadly open across multiple cell classes as 
our controls (Fig. 3A). HOMER generates a list of motifs in the form 
of a position probability matrix accompanied by an optimal detection 
threshold to maximize the enrichment of the motif in the target se-
quences. To ensure detection of relatively low-frequency but func-
tionally important motifs, we retained all motifs that were present 
in >2% of the cell class–enriched OCRs and whose statistical sig-
nificance of enrichment was <10−10 (calculated using the binomial 
distribution). We analyzed a total of 35 datasets (i.e., six species × 
six cell classes, except for chicken ganglion cells), identifying a me-
dian of 47 de novo motifs in each dataset, with a minimum of eight 
motifs observed for lamprey Müller glial cells, likely due to the small 
number of these cells in our dataset (table S3).

Next, we sought to compare class-specific motifs across species 
to determine whether diverse vertebrates use a shared set of motifs 
in each retinal cell class. To accomplish this goal, we used Tomtom 
(MEME Suite; version 5.4.1) (22) to conduct pairwise motif com-
parisons and then hierarchically clustered motifs based on their 
similarity scores. HOMER often identifies multiple related motifs; 
thus, the several dozen de novo motifs found for a given cell class in 
an individual species may correspond to a smaller set of truly dis-
tinct motifs. By including all identified motifs for a given cell class in 
our hierarchical clustering, we can both delineate intraspecific motif 
redundancy and identify interspecific similarities in motif inventory.

Visual inspection of motif similarity matrices for each of the six 
retinal cell classes reveals multiple well-defined clusters of motifs for 
each cell class (Fig. 3B). Motifs in these clusters typically exhibit some 
of the highest “motif enrichment” scores (Fig. 3B; see Materials and 
Methods). In addition, some motif clusters are quite large, encompass-
ing as much as ~35 to 50% of the motifs in a given cell class (e.g., in 
photoreceptors, bipolar cells, and horizontal cells), underscoring the 
presence of motif redundancy in the HOMER outputs. Within indi-
vidual clusters, we typically find motifs from multiple species, in-
dicative of cross-species conservation of motifs. To define discrete 
motif clusters likely corresponding to individual conserved motifs, 
we truncated the motif dendrogram (obtained by hierarchical clus-
tering) at a height of 0.9 (equal to one minus the Pearson correlation 
coefficient of motif similarity values). We then designated a motif 
cluster as “EC” (if it included motifs from both jawless (i.e., lamprey) 
and three or more jawed species and if the median of the Pearson 
correlation coefficient among the motif similarities of the most en-
riched motifs from each species within a cluster was greater than 0.5 
(Fig. 3, B and C; see Materials and Methods). For each EC motif 
cluster, the motifs with the highest motif enrichment score from each 
species were aggregated into a single “merged motif ” (see Materials 
and Methods), which we designated as an “EC motif ” (Fig. 3C and 
fig. S3). In this way, we identified a total of 16 EC motifs, with two 
to four motifs in each retinal cell class (Fig. 3, B and D). We infer 
that these motifs formed part of the retinal cis-regulatory codes of 
the most recent common ancestor of extant vertebrates based on 
their enrichment in both jawed and jawless species.

The close similarity of the species-specific position probability 
matrices used to create merged EC motifs suggests that these mo-
tifs are bound by homologous TFs with very similar DNA binding 
preferences across species. To nominate TFs likely to bind these 
EC motifs, we used Tomtom to compare EC motifs to known mo-
tifs in HOCOMOCO (23), a curated database of mouse and hu-
man TF-binding site motifs. We found that all EC motifs showed 
highly significant matches to one or more motifs in the database 
(fig. S3 and table S4). For example, the most enriched EC motifs in 
photoreceptors (PH_13) and bipolar cells (BC_11) are very similar 
to each other and closely match paired-type “K50” homeodomain–
binding sites (K50 denoting the presence of lysine at position 50 
of the homeodomain) bound by CRX and/or OTX2 in the HOCO-
MOCO database. These TFs and their cognate motifs are enriched 
in mammalian photoreceptor and bipolar cells relative to other reti-
nal cell types and play critical roles in controlling development and 
gene expression in these cell classes (24, 25). Most of the EC motifs 
show matches to binding sites of mammalian TFs previously shown 
to play key roles in regulating gene expression in the cell class in 
which the EC motif was found to be enriched (table S4) (26, 27).

We postulated that the nonmammalian species in our study 
likely also express TFs in their respective cell classes with similar 
binding preferences to those of their mammalian counterparts. To 
test this idea, we mapped the candidate mammalian TFs onto their 
closest homologs in the nonmammalian species using OrthoFinder 
(28). We then intersected the resultant TF orthology groups with 
lists of differentially expressed genes obtained from scRNA-seq 
profiling of retinas from each of the six species. For 12 of the 16 
EC motifs, we were able to identify cognate orthologous TFs whose 
expression was enriched in the corresponding cell class in jawless 
and four or more jawed species (fig. S4 and table S4; see Materials 
and Methods). This finding suggests that cross-species conservation of 
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class-enriched motifs is paralleled by cross-species conservation of cog-
nate TF expression.

Next, we sought to systematically determine which features of 
class-specific cis-regulatory grammar are conserved across species. 
cis-regulatory grammar can be subdivided into two components: 
“vocabulary,” consisting of the occurrence, affinity, and location of 
individual motifs within an OCR, and “syntax,” comprising the co-
occurrence, spacing, and relative orientation of pairs of motifs in an 
individual OCR (Fig. 4A). So far, we have identified significant class-
specific enrichment of 16 EC motifs (Fig. 3). We next determined the 

spatial distribution of these motifs within class-enriched OCRs and 
quantified their position weight matrix (PWM) scores, a surrogate 
measure of binding affinity. We found that most motifs display a 
Gaussian-like distribution of enrichment conserved across species 
with a peak centered on the OCR summit (Fig. 4B). PWM scores 
also peaked at the OCR summit (Fig. 4B). In most cases, both mo-
tif enrichment and PWM scores declined monotonically with dis-
tance from the summit, approaching baseline levels around ±100 bp. 
Fundamentally similar motif distributions were identified in OCRs 
occurring in promoter regions (i.e., between −2000 and +1000 bp 

Fig. 3. Multiple cis-regulatory motifs for each retinal cell class are conserved between jawed and jawless species. (A) Schematic showing the methodology used 
for the identification of cell class–enriched OCRs, the discovery of sequence motifs, and motif clustering. (B) Heatmaps showing motif-similarity correlation values for all 
pairs of significantly enriched de novo motifs from six species. The motif-pair values were hierarchically clustered to reveal families of related motifs (see Materials and 
Methods). EC motif families—as defined in the main text—are enclosed by green boxes and indicated by numbered black bars at the bottom of each heatmap. The spe-
cies of origin for each motif is indicated by color-coding across the top and left sides of each heatmap. Motif enrichment is the normalized statistical significance of motif 
enrichment in each species (i.e., the most enriched motif in each species has a motif enrichment = 1). (C) Representative examples of two EC motifs in bipolar cells. The 
sequence logo for the most significantly enriched motif in each species is shown, along with the logos for a merged motif representing the average of the six species 
motifs. For the full set of EC motifs, see fig. S3. (D) The median of the normalized statistical significance of motif enrichment for each of the 16 de novo motifs is shown (see 
Materials and Methods). The normalized motif enrichment value for each of the individual species is also presented. The sequence logos at the bottom represent the 
merged motifs.
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Fig. 4. Evolutionary conservation of retinal cis-regulatory motif vocabulary. (A) Schematic representation of the major features of cis-regulatory grammar. (B) The 
spatial distribution and normalized PWM scores of the EC motifs within class-enriched OCRs in the six species are presented. The sequence logos for each EC motif and 
the closest known motif in the HOCOMOCO database (23) are displayed on the left. Analysis of motif syntax is presented in figs. S6 and S7. PH, photoreceptor cell; BC, bi-
polar cell; HC, horizontal cell; AC, amacrine cell; GC, ganglion cell; MG, Müller glia; ND, not determined.
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of the transcription start site) and nonpromoter regions (fig. S5). 
Together, these results indicate that features of cis-regulatory vocab-
ulary are largely shared across motifs and species.

To ascertain whether syntactic features are conserved across 
species, we analyzed the co-occurrence, spacing, and relative orientation 
of all homo- and heterotypic pairs of EC motifs enriched in the same 
cell class (Fig. 4A). As expected from the central pattern of enrichment 
of individual motifs (Fig. 4B), we observed enriched co-occurrence of all 
motif pairs—with the exception of GC_9 + GC_9—across all six species 
(fig. S6). In contrast, we observed little evidence for conserved pat-
terns of relative motif spacing or orientation (fig. S7). One motif, 
BC_11, shows enrichment of tandem pairs with an intersite spacing 
of 8 to 11 bp (i.e., approximately one helical turn), but this pattern is 
only conserved across jawed species (i.e., not in lamprey). A similar 
pattern of co-occurrence of monomeric K50 homeodomain–type 
motifs was previously noted in CRX chromatin immunoprecipita-
tion sequencing peaks of mouse photoreceptors (29). The related 
photoreceptor-enriched K50-type motif identified in the present 
study (PH_13) is a dimeric motif (18). We therefore reanalyzed 
our photoreceptor-enriched OCRs using a monomeric K50 motif, 
which revealed helical co-occurrence of motif pairs similar to that 
observed for BC_11 (fig. S7B). Again, this co-occurrence pattern 
appears to be restricted to jawed species. We also detected a distinc-
tive pattern of motif co-occurrence for the Müller glia–enriched 
HMG/SOX-type motif, MG_16, which consisted of pairs of motifs 
on opposite strands of the double helix, separated by 4 or 5 bp 
(fig. S7). This pattern of co-occurrence was conserved across all spe-
cies including lamprey and likely represents a binding site for homo-
or heterodimeric SOXE TFs (i.e., SOX8, SOX9, and SOX10), as 
previously described (30). We found that SOXE-type TFs showed 
Müller glia–enriched expression in all six species (fig. S4 and table S4). 
We therefore consider this dimeric site to represent a single motif 
occurrence and not a feature of higher-order syntax. Thus, although 
almost all motif pairs show higher rates of co-occurrence than in 
control regions, few other higher-order syntactic features are shared 
between jawed and jawless species.

Machine learning models of cis-regulatory grammar cluster 
by cell class
To enable quantitative comparison of class-specific cis-regulatory 
grammars across species, we trained machine learning models of 
grammar for each of the six cell classes in each of six species (with 
the exception of chicken ganglion cells). In light of the findings in 
the preceding section, we decided to build minimal vocabulary-
based models that encompass only two key features of cis-regulatory 
grammar: the presence/absence of motifs and motif affinity. For 
this purpose, we constructed gapped k-mer support vector machine 
(gkm-SVM) (31) classifiers to distinguish cell class–enriched OCRs 
(i.e., the positive training set) from broadly OCRs (the negative 
training set). We constructed a total of 35 gkm-SVM models by ran-
domly partitioning each training dataset into five subsets and per-
forming fivefold cross-validation (see Materials and Methods). We 
then used the five resultant models for each dataset to score the 35 
test sets from each cell class and species. We measured the perfor-
mance of the models by calculating the receiver operating charac-
teristic (ROC) curve and the corresponding area under the curve 
(AUC) (fig. S8). For same-dataset validation, the mean ROC-AUC 
value for the 35 models was 0.854 (±0.049 SD), with the best perfor-
mance observed with the mouse horizontal cell model (0.920 ± 0.004 

SD) and the worst performance with the lamprey amacrine cell mod-
el (0.733 ± 0.004 SD). Next, we evaluated the ability of the models to 
classify OCRs in the 34 other datasets. The average cross-species 
performance of models on other-class OCRs (e.g., lamprey photorecep-
tor model classifying mouse horizontal cell OCRs) was essentially ran-
dom (ROC-AUC = 0.520 ± 0.086 SD) and provides an empirical estimate 
of baseline model performance. In contrast, for photoreceptor, bi-
polar cell, horizontal cell, and Müller glial models, we observed 
good performance in classifying same-class OCRs from different 
species, with all ROC-AUC scores above baseline performance, 
except for the lamprey Müller glial model whose performance was 
borderline overall, but consistently better for same-class OCRs than 
other-class OCRs (0.60 to 0.69 compared to 0.487 ± 0.030 SD) 
(fig. S8). The relatively poor performance of the lamprey Müller 
glial model is likely attributable to the small number of Müller glia 
identified in our snATAC-seq analysis and the corresponding paucity 
of class-enriched OCRs (151 sequences in total) available for model 
training (tables S5 and S6). We observed comparable cross-species 
performance for amacrine and ganglion cell models, except for the 
zebrafish and goldfish models, which demonstrated excellent per-
formance on each other’s datasets (ROC-AUC ≥ 0.80) but worse 
performance on non-teleost datasets (see fig. S8). Overall, the 
cross-species classificatory performance of these models confirms 
the existence of universally shared class-specific grammar features.

To evaluate the ability of these models to predict functionally im-
portant TF-binding sites across species, we used them to analyze the 
mouse Gnb3 promoter, which drives expression in both photorecep-
tors and bipolar cells. We previously showed that this promoter 
contains five phylogenetically conserved K50 homeodomain–binding 
sites, two of which are required for photoreceptor and bipolar expres-
sion (11). We used photoreceptor and bipolar cell models trained 
on lamprey, zebrafish, goldfish, chicken, and human datasets to 
score the mouse Gnb3 promoter. To visualize the contribution of 
individual nucleotides to the overall model scores, we used GkmEx-
plain (32), a feature attribution method that displays the predicted 
relative contribution of individual nucleotides as a sequence logo. A 
produced highly concordant sequence logos, attributing particular 
importance to the two K50 motifs required for promoter activity 
(fig. S9). Mutations of the highest-scoring nucleotides in all 
models (in motifs #2 and #4) result in a severe reduction of promoter 
activity (fig.  S9). These findings demonstrate that cis-regulatory 
models from evolutionarily distant species are able to predict func-
tionally important motifs—and even individual nucleotides—with 
great precision.

To evaluate the similarity and relatedness of models across spe-
cies, we quantified the pairwise distances between models and used 
the resultant data to hierarchically cluster them. To accomplish this 
task, we first used the models to score all possible 11-mers, extracted 
the top 200 highest-scoring 11-mers for each model, and combined 
them to define a set of 4276 unique 11-mers. We found that 53.8% 
(2300 of 4276) of these 11-mers contain EC motifs, indicating that 
these models capture grammar features identified in the preceding 
section as well as additional features not detected by our motif-
based approach. Next, we measured the pairwise distance between 
models by calculating the Pearson correlation coefficient between 
each model’s scores for the 4276 11-mers (Fig. 5B). We then hierar-
chically clustered the models using one minus the Pearson cor-
relation coefficient as a distance metric. The resulting hierarchical 
clustering revealed that the models group by cell class and not by 
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species (Fig. 5C). The cell-class clusters aggregate into two superclu-
sters, one comprising photoreceptor and bipolar cell models and the 
other comprising all other models. This higher-order grouping likely 
reflects the fundamental distinction between grammars dominated 
by the presence of K50 homeodomain–binding site motifs (photore-
ceptor and bipolar cell grammars) and those that are not. Consistent 
with these results, we calculated a silhouette score—a metric used to 
evaluate the stability and robustness of clusters—and found that it 
culminated with the formation of six clusters (fig. S10). In summary, 
the robust coclustering of retinal cell–class models from both jawed 
and jawless species highlights the deep evolutionary conservation of 
retinal cis-regulatory codes.

DISCUSSION
The fundamental cell class architecture of the vertebrate retina has 
remained largely unchanged over more than 500 Ma of evolution. 
Using single-cell chromatin accessibility profiles of retina from lamprey, 

zebrafish, goldfish, chicken, mouse, and human, we investigated cis-
regulatory grammar and evaluated cross-species homology at the reso-
lution of the cell class. Cross-species comparison of cis-regulatory 
grammar features revealed deep conservation of class-specific motif 
vocabulary but little preservation of higher-order syntax between 
jawed and jawless species. We identified between two and four EC 
motifs for each retinal cell class, underscoring the combinatorial nature 
of eukaryotic cis-regulatory codes (33). Although we did not detect 
consistent patterns of motif spacing or orientation between jawed 
and jawless species, the central enrichment of motifs within OCRs 
results in a tendency for co-occurring motifs to cluster near the 
OCR summit. Pairwise comparison of machine learning models of 
cis-regulatory grammar demonstrated close similarity of models 
within retinal cell classes, highlighting the evolutionary antiquity of 
vertebrate retinal cis-regulatory codes. We also observed higher-
order grouping of models, possibly reflective of deeper sister relation-
ships among retinal cell classes as previously demonstrated for 
photoreceptors and bipolar cells (11). Overall, these findings confirm 

Fig. 5. Retinal cell class–specific cis-regulatory grammars are conserved between jawed and jawless species. (A) Schematic showing methodology used to generate 
and compare gkm-SVM models of cis-regulatory grammar. (B) Heatmap showing Pearson correlation coefficients between gkm-SVM models. Models for a given cell class 
are enclosed by black boxes. (C) Hierarchical clustering of the gkm-SVM models. Branch nodes with a statistical significance of P < 0.01 are denoted by an asterisk (ap-
proximately unbiased P value for selective inference by bootstrap resampling analysis followed by a multiscale resampling). L, lamprey; Z, zebrafish; G, goldfish; C, chicken; 
M, mouse; and H, human.
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that the six class-level cis-regulatory codes controlling vertebrate 
retinal gene expression arose in the common ancestor of extant ver-
tebrates more than half a billion years ago and persist despite near-
total enhancer replacement.

Our study is distinctive in several respects, including the evolution-
ary depth of the cis-regulatory comparisons (i.e., between jawed and 
jawless species), the inclusion of all major cell classes of the study 
tissue, the revelation of a conserved motif-based grammar with central 
enrichment in OCRs, and the demonstration of perfect coclustering 
of class-specific cis-regulatory grammar models across all study spe-
cies. Prior work comparing vertebrate retinal cell types by scRNA-
seq demonstrated deep conservation of transcriptomic signatures in 
the six major retinal cell classes, including between jawed and jaw-
less species (7, 9). However, the present study performed compara-
tive cis-regulatory analysis of retina cell classes across a wide range 
of vertebrates using open chromatin data. Comparative analyses of 
cis-regulatory regions in other vertebrate tissues (e.g., brain, heart, 
and liver) have shown a progressive decay of enhancer sequence 
alignability with evolutionary distance (34–37), as also shown here 
(Fig. 2). Some of those prior studies also found evidence of conserved 
enhancer function despite sequence turnover (34, 37). One cross-
species analysis of cerebellar cell types (34) is especially comparable 
to the present study in several respects: It focused on a morphologi-
cally conservative part of the central nervous system; it included all 
major tissue cell types; it revealed conservation of motif enrichment 
and co-occurrence patterns within type-specific cis-regulatory regions; 
and it showed that sequence-based models trained on OCRs can 
accurately predict the cell-type specificity of accessibility in other 
species, implying conservation of the underlying cis-regulatory 
grammars. Thus, the fundamental features of cis-regulatory grammar 
conservation appear to be similar in diverse parts of the vertebrate 
central nervous system. Nevertheless, the present work is distinctive, 
if not unique, in imputing cis-regulatory features for all major retinal 
cell classes onto the common ancestor of extant vertebrates, while 
most prior studies were limited to comparisons among mammalian 
species (34,  36) or amniotes (35,  37). Furthermore, unlike some 
prior studies using deep-learning models, our work delves into the 
underlying features of cis-regulatory grammar to reveal a deeply 
conserved pattern of high-affinity TF-binding site enrichment with-
in the central region of OCRs.

In the course of evolution, novel cell types can arise via “duplication” 
of a single ancestral cell type into two descendant daughter cell types, 
which subsequently evolve distinctive cellular features via a process 
known as “individuation” (2). Shared cellular features may arise via 
evolutionary convergence in cell types derived from remote lineag-
es. Thus, the expression of effector genes controlling cell type–specific 
features—for example, the expression of opsins in photoreceptor 
types—is often a poor guide to the underlying evolutionary relation-
ships of cell types. In contrast, the transcriptional regulatory net-
works that control expression of effector genes often persist for long 
evolutionary periods and are therefore more stable objects for evo-
lutionary comparison. For this reason, Arendt and colleagues previously 
proposed that the presence of sets of terminal selector TFs—dubbed 
“core regulatory complexes (CoRCs)”—should be used to define cell 
types and trace their evolutionary origins (2, 38). The most common 
method for evaluating CoRCs is to measure the expression of TFs in 
individual cell types. However, most cell types express dozens of 
TFs, and it can therefore be difficult, without a priori knowledge, to 
prioritize factors for evolutionary comparison based on expression 

pattern alone. The present study offers a methodologic solution to 
this problem: By elucidating the cis-regulatory codes of individual 
cell types or classes, it is possible to nominate the most likely cog-
nate TFs that bind the enriched motifs that comprise the primary 
feature of cis-regulatory grammar.

Another reason why cis-regulatory codes may be more reliable 
guides to deep evolutionary relationships than TF expression alone 
is that differential TF paralog choice may obfuscate shared patterns 
of TF usage in homologous cell types across species. For example, in 
mammals, the Maf family TF Nrl is required for rod photoreceptor 
cell fate determination and gene expression (39). Yet, while bird retinas 
contain rod photoreceptors (40), avian genomes lack the NRL gene 
(41). Instead, avian rods express another Maf TF MAFA (42, 43), 
which is thought to play an analogous regulatory role to that of Nrl 
in mammals (43, 44). Similarly, while nrl is required for rod de-
velopment in zebrafish larvae, it is dispensable for rod cell fate in 
adult fish (45). This differential requirement might be explained by 
the fact that zebrafish coexpress two Maf family members in rods, 
nrl and mafba, and either of these factors could contribute to main-
tenance of rod gene expression (46). Thus, diverse vertebrates appear 
to have co-opted different Maf family TFs for the same regulatory 
purpose in rods. These various Maf family members bind similar 
motifs (47), suggesting that shared patterns of motif enrichment 
within OCRs could inform evolutionary comparison despite differ-
ential paralog usage across species. Thus, in the face of both extensive 
enhancer turnover and differential TF paralog choice, comparison 
of cis-regulatory codes may be the most reliable method for defining 
interrelationships among evolutionarily distant cell types.

The remarkable evolutionary stability of cis-regulatory codes is 
likely attributable to their instantiation in thousands of enhancers 
across the genome and the lack of an evolutionary mechanism for 
coordinate changes in multiple genomic regions. If a mutation in a 
TF changes its DNA binding preference, it could result in a cata-
strophic failure of binding across the genome and widespread pertur-
bations of gene expression. Conversely, mutations in an individual 
enhancer motif might render the enhancer inactive unless its cog-
nate TF undergoes simultaneous changes in its binding preference, 
yet such changes would, in turn, render the TF incapable of binding 
other enhancers. For these reasons, it appears that cis-regulatory 
codes and TF-binding preferences are interlocked and exceptionally 
resistant to evolutionary change.

MATERIALS AND METHODS
Animal husbandry
Lamprey
Downstream- and upstream-migrant sea lamprey (P. marinus) were 
provided by the Hammond Bay Biological Station of the US Geo-
logical Survey, Millersburg, MI, USA. Downstream migrant lamprey 
was captured by drift net in the St. Marys River while they were in 
the process of migrating to Lake Huron to begin the parasitic stage 
of the life cycle. Adult lamprey was captured in tributaries of Lake 
Huron (Ocqueoc River and Cheboygan River) in the process of their 
upstream spawning migration. Downstream- and upstream-migrant 
lamprey were kept in well-aerated tanks in cyclic 12L/12D–hour light-
ing in accordance with the rules and regulations of the National Insti-
tutes of Health (NIH) guidelines for research animals, as approved by 
the University of California Los Angeles Animal Research Committee 
(Protocol #14-005; animal welfare assurance #A3196-01).
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Chicken
Fertilized specific pathogen–free white leghorn chicken (G. gallus 
domesticus) eggs (Charles River Laboratories) were incubated at 38°C 
until hatching. Chicks were maintained in groups of three to five 
individuals under constant illumination from a heat lamp and were 
provided Purina Start & Grow medicated feed (Purina Animal Nu-
trition LLC) and tap water ad libitum until retinas were harvested. 
Chicken husbandry and experimental procedures were carried out 
in accordance with US NIH guidelines (48) and approved by the 
Washington University in St. Louis Animal Care and Use Commit-
tee (protocol #22-0430; animal welfare assurance #D16-00245).

Lamprey retina RNA-seq and transcript annotation
To improve retinal gene annotations in lamprey, Iso-Seq was per-
formed on retinas of upstream-migrants. Lampreys were deeply 
anesthetized with tricaine methanesulfonate (400 mg/liter; MS-222, 
E10521, Sigma-Aldrich), decapitated, and enucleated. After remov-
ing the anterior chamber and the vitreous body from the eye, the 
retina was isolated from the retinal pigment epithelium in Hepes-
buffered Ames’ solution at room temperature, flash frozen in liquid 
nitrogen, and stored at −80°C. Total RNA was extracted using 
TRIzol and purified using an RNeasy Mini Kit (Qiagen). A SMRT-
bell Iso-Seq library was prepared according to the manufacturer’s 
protocol (Pacific Biosciences). The library was then sequenced using 
a single PacBio Sequel II SMRT cell. Demultiplexed PacBio circular 
consensus sequences–generated HiFi reads with a predicted accuracy 
≥Q20 were first processed using lima in (isoseq3; v.3.4.0; http://isoseq.
how/) for 5′ and 3′ primer removal with parameters (--iso-seq 
--peek-guess). PolyA+ tails and artificial concatemers were trimmed 
and removed using refine (isoseq3) with the parameter (--require-polya), 
resulting in full-length nonconcatemer reads. Clustering was performed 
using the partial order alignment algorithm using cluster (isoseq3) with 
the parameter (--use-qvs). For the identification of unidentified iso-
forms in the lamprey retina, the resultant high-quality consensus 
sequences were mapped to the genome (kPetMar1) using mini-
map2 (49) with the following parameters: -ax splice -u f. StringTie 
(v2.2.1) was then used (with the command line option –L) to as-
semble a transcriptome based on the mapped Iso-Seq reads. String-
Tie was then run again (with the command line option “merge -F 0 
-T 0”) to obtain an updated transcriptome annotation. This annotation 
incorporated modifications to transcript body definitions from the 
existing National Center for Biotechnology Information (NCBI) 
Reference Sequence (RefSeq) reference (GCF_010993605.1) and 
previously unidentified transcripts supported by the Iso-Seq reads.

Gene orthology inference
To infer orthologous genes among evolutionarily diverse vertebrate 
species, we used Orthofinder (28), which defines an orthogroup 
(OG) as a set of orthologous and paralogous genes that can be used 
as an object for comparative analysis. In principle, an OG contains 
the set of genes that are descended from a single gene in the last 
common ancestor of all the species being considered. Several repre-
sentative vertebrate and nonvertebrate species (vase tunicate, clubbed 
tunicate, hagfish, brook lamprey, skate, white shark, catshark, me-
daka, reedfish, gar, frog, coelacanth, green anole, platypus, and ele-
phant) along with the six study species (lamprey, zebrafish, goldfish, 
chicken, mouse, and human) were used to infer OGs. OGs were de-
fined by setting the ascidian node as a base node, and then hierarchical 
OGs (HOGs) were defined with a jawless-jawed vertebrate divergence 

node as a base node. For this purpose, protein sequences were ob-
tained from the NCBI RefSeq or Ensembl databases, except for the 
lamprey and goldfish. For the latter species, the transcript sequences 
were retrieved from the genome with the transcript annotation using 
gffread (version 0.12.7), discarding multi-exon mRNAs that had any 
intron with a noncanonical splice-site consensus (i.e., not GT-AG, 
GC-AG, or AT-AC). Next, the sense strand of the gene transcripts 
was used to predict coding sequences via TransDecoder (version 
5.5). This process used the TransDecoder.LongOrfs function with 
the “-S” option. The longest sequence of predicted amino acids 
was selected for each gene and used for orthology inference. The up-
dated transcript assembly of the lamprey was used, as described in 
the preceding section. Orthology inference was conducted using 
Orthofinder (version 2.5.5.2) with the following parameters: -M msa -S 
blast -A mafft -T fasttree. The species tree was subsequently cor-
rected manually using the -s option. In lieu of the default FastTree 
tree inference program, IQtree2 (version 2.3.2) was used for the 
generation of all trees. The resultant phylogenetic trees were subjected 
to a duplication-loss-coalescence analysis with the rooted gene trees 
to resolve speciation and gene duplication events. Last, HOGs were 
identified by setting the jawless-jawed vertebrate divergence node as 
the root node. The nomenclature of genes in lamprey and goldfish 
was updated on the basis of the information provided by HOGs. For 
example, two genes, “NTNG1-NTNG2-1” and “NTNG1-NTNG2-2,” 
in lamprey are paralogs, and both are orthologs of the human genes 
NTNG1 and NTNG2. The accession numbers of gene annotations 
are provided in table S7.

Sample collection and library preparation for 
single-cell sequencing
Lamprey
The retinas of downstream-migrant lamprey were dissected and 
snap-frozen as described above. Frozen nuclei were extracted using 
the Chromium Nuclei Isolation Kit (10x Genomics) according to 
the manufacturer’s instructions. In brief, three retinas were dissociated 
in lysis buffer with a plastic pestle until a homogeneous solution was 
obtained. Residual tissue debris was removed with the nuclei iso-
lation column followed by centrifugation in debris removal buffer. 
The supernatant was discarded, and the nuclei pellet was resuspended 
in wash buffer. The nuclei were pelleted by centrifugation and resus-
pended in 50 μl of resuspension buffer. A sample of nuclei was 
stained with propidium iodide and quantified using a hemocytom-
eter. The remaining resuspended nuclei (~18,000 nuclei per library) 
were used for transposition and loaded into the 10x Genomics 
Chromium Single Cell system. From a single-nuclei suspension, two 
replicates of the multiome library were constructed using the Chro-
mium Next GEM Single-Cell Multiome Reagent Kit version 1 (10x 
Genomics), according to the manufacturer’s instructions. The li-
braries were then subjected to sequencing on the Illumina Nova-
Seq platform.
Chicken
Newly hatched chicks were killed by carbon dioxide inhalation fol-
lowed by manual cervical dislocation. Retinas were removed from 
the eye by dissection, transferred to calcium and magnesium-free 
Hanks’ balanced salt solution (HBSS, Thermo Fisher Scientific), and 
dissociated into single cells by papain digestion (11). A single chick 
retina was incubated in 800 μl of HBSS with 1.3 mg of papain 
(Worthington Biochemical Corporation) at 37°C for 10 min. The 
retina was then dissociated by gentle trituration with a pipette. The 

http://isoseq.how/
http://isoseq.how/
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dissociated cells were washed with Dulbecco’s modified Eagle’s media 
(Thermo Fisher Scientific) containing 10% fetal bovine serum 
(Thermo Fisher Scientific) and deoxyribonuclease I (Roche) for 5 min 
at 37°C. The cells were then pelleted by centrifugation at 1000g 
for 1 min. The cells were resuspended in Dulbecco’s phosphate-
buffered saline with 1% bovine serum albumin (BSA) and filtered. 
To isolate nuclei, dissociated cells were subjected to centrifugation at 
300g for 5 min at 4°C. The cell pellet was then resuspended in 100 μl 
of lysis buffer {0.1% IGEPAL CA-630, 0.1% Tween-20, and 0.01% 
digitonin in lysis dilution buffer [10 mM tris-HCl, 10 mM NaCl, 
3 mM MgCl2, and 1% BSA (pH 7.4)]}, mixed three times by pipetting, 
and incubated on ice for 3 min. The nuclei were then added to 1 ml 
of wash buffer (0.1% Tween-20 in the lysis dilution buffer) and cen-
trifuged at 500g for 5 min at 4°C. Last, the nuclei pellet was resuspended 
in 50 μl of 1× diluted nuclei buffer (10x Genomics) and filtered through 
a 40-μm Flowmi cell strainer. The nuclei were quantified using a 
hemocytometer. Nuclei (~22,000) were then resuspended and used 
for transposition and subsequently loaded into the 10x Genomics 
Chromium Single Cell system. The scATAC-seq library was con-
structed using the Chromium-Single Cell ATAC Reagent Kits v1.1 
(10x Genomics), according to the manufacturer’s instructions. The 
libraries were subjected to sequencing on the Illumina Nova-
Seq platform.

Sequencing data preprocessing
Publicly available data were retrieved from previous studies, includ-
ing snATAC-seq datasets for goldfish (50) and mouse (51) as well as 
multiome (snRNA-seq +  snATAC-seq) datasets for zebrafish (52) 
and human (53). The processed sequencing data were retrieved 
from the original study in zebrafish, while for the other five species, 
the raw sequence data were initially processed by the Cell Ranger 
ATAC version 2.0.0 pipeline or the Cell Ranger ARC version 2.0.0 
pipeline (10x Genomics) for read filtering, alignment against the 
genome, and barcode counting. The genome assemblies used were 
kPetMar1 (lamprey), GCA_014332655.1 (goldfish), galGal6 (chick-
en), mm10 (mouse), and hg38 (human). The processed data were 
loaded into ArchR (version 1.0.2) (54) for goldfish, chicken, and 
mouse, while the lamprey and human multiome data were loaded 
into Seurat (version 4.0.3) (55) and Signac (version 1.3.0) (56). 
Transcriptome annotations used in this study are as follows: lam-
prey, custom annotation as described in the previous section; goldfish, 
the previously described custom annotation (50); chicken, NCBI 
G. gallus Annotation Release 104; mouse, mm10-2020-A-2.0.0 pro-
vided by 10x Genomics; and human, GRCh38-2020-A-2.0.0 pro-
vided by 10x Genomics.

snATAC-seq analysis
Lamprey
Multiome (snRNA-seq + snATAC-seq) sequence reads from upstream-
migrant lamprey retina were used as input data for analysis by Seurat 
and Signac, respectively. Low-quality cells were removed if the cell 
contained <300 expressed genes, if >0.3% of the cell’s total gene ex-
pression derived from mitochondrial genes, if <1000 fragments 
were detected, or if the cell had a transcription start site enrichment 
score <3. Putative doublets were removed on the basis of the presence 
of >40,000 fragments or >10,000 expressed genes.

For gene expression analysis, the negative binomial regression 
normalization method implemented in SCTransform (Seurat) was 
used to standardize the gene expression matrix and reduce gene 

expression noise. Dimensionality reduction of gene expression was 
then conducted with RunPCA. The significance of each principal 
component in the RNA analysis was evaluated manually using elbow 
plots. One to 30 dimensions were chosen for the subsequent analysis.

A cell-by-region count matrix of ATAC-seq reads overlapping 
OCRs defined by Cell Ranger ATAC was generated using Feature-
Matrix and CreateChromatinAssay (Signac). The count matrix was 
subjected to normalization and dimensionality reduction using 
FindTopFeatures (Signac) with a min.cutoff of “q0,” RunTFIDF (Sig-
nac), and RunSVD (Signac) with default settings. The correlation 
between total counts and each dimension in the ATAC analysis was 
visualized with DepthCor (Signac), and the first latent semantic in-
dexing (LSI) component, which captured sequencing depth (techni-
cal variation), was filtered.

The nearest neighbors for each cell were identified on the basis of 
a weighted combination of two modalities (RNA and ATAC) by 
constructing a weighted nearest neighbor graph using FindMulti-
ModalNeighbors with 1 to 30 dimensions [principal components 
analysis (PCA)] and 2 to 30 dimensions (LSI). The clusters were deter-
mined by modularity optimization using FindClusters with a resolu-
tion of 0.2. Cell clusters were assigned to retinal cell classes based on 
the expression of the following cell-class marker genes (9): RHO and 
GNAT2 (photoreceptor); SLC17A6_1, SLC17A6_2, GRIK2_1, GRIK2_2, 
and PRKCA (bipolar cell); ONECUT1 (horizontal cell); SLC6A9, 
SLC6A11_1, SLC6A11_2, and SLC32A1 (amacrine cell); and RBPMS 
(ganglion cell). The Müller glia cluster was manually annotated using 
CellSelector (Seurat) based on the expression of GLUL.

Two technical replicates were independently analyzed. Following 
cell annotation in each of the two technical replicates, the data were 
merged into a single dataset. Gene expression data were then nor-
malized, scaled, and subjected to PCA analysis as described above. 
The clusters were identified by constructing a k-nearest neighbor 
graph with FindNeighbors (Seurat) with 1 to 40 dimensions (PCA), 
followed by modularity optimization using FindClusters (Seurat) 
with a resolution of 1.5. The cell embedding was obtained with 
RunUMAP (Seurat). The cell annotations were transferred from the 
multimodal clustering analysis conducted in each sample. Last, pu-
tative mixed clusters (i.e., those assigned annotations for more than 
one cell class) were removed from the analysis.
Zebrafish
Multiome (snRNA-seq + snATAC-seq) sequence reads from adult 
zebrafish retina were retrieved from a repository [see the original 
study (52)] and used as input data for analysis by Seurat and Signac, 
respectively. Low-quality cells were removed if >5% of the cell’s total 
gene expression derived from mitochondrial genes, if <1000 fragments 
were detected, or if the cell had a transcription start site enrichment 
score <2. Putative doublets were removed on the basis of the presence 
of >6000 fragments or >4000 expressed genes. Cell annotations pre-
sented in the original study (52) were used.
Goldfish
Barcoded and aligned fragments were used as input data for ATAC 
analysis by ArchR. A genome-wide tile matrix with insertion counts 
was calculated on 500-bp nonoverlapping windows using createAr-
rowFiles. Low-quality cells were removed if they had a transcription 
start site enrichment score of <15 or <1000 fragments. Putative 
doublets were removed using filterDoublets with a filterRatio of 2. 
Nuclei with >50,000 fragments were also excluded.

Dimensionality reduction was implemented with addIterativeL-
SI using the LSI method. Cell clustering was then performed with 
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addClusters using a shared nearest neighbor (SNN) modularity op-
timization–based clustering algorithm. A total of eight clusters were 
identified, comprising rod photoreceptors, cone photoreceptors, 
bipolar cells, horizontal cells, amacrine cells/ganglion cells, Müller 
glial cells, microglia, and oligodendrocytes. Cluster annotation was 
performed on the basis of marker genes identified in the original 
study (50). To distinguish between amacrine and ganglion cells, cell 
annotations from scRNA-seq data were projected onto cells in the 
snATAC-seq dataset. First, 501-bp OCRs were generated with ad-
dReproduciblePeakSet using the pseudo-bulk ATAC replicates for 
each cluster. Next, peak sets from each cell class were merged to create 
a nonredundant union set, which was then subjected to analysis in 
Signac for normalization and dimensionality reduction, as described 
above for lamprey. Clusters were identified using FindClusters with 
a resolution of 2.0. The processed data were then integrated with the 
scRNA-seq data, where the gene expression profile was processed 
using a standard protocol in Seurat, and the cell clusters were an-
notated according to the expression of marker genes identified in 
the original study (50). Cell annotations for the scRNA-seq data 
were then projected onto the cells of the snATAC-seq dataset using 
FindTransferAnchors with the cca reduction method, followed by 
TransferData with the LSI weight reduction method, using 2 to 30 
dimensions. Transferred labels were retained on the basis of the 
most abundant cells within each cluster. Only the five classes of retinal 
neurons and Müller glia were retained for subsequent analysis.
Chicken
Barcoded and aligned fragments were used as input data for ATAC 
analysis by ArchR. Low-quality nuclei were removed if they had a 
transcription start site enrichment score of <15 or <3000 fragments. 
Putative doublets were removed using the filterDoublets function with 
a filterRatio of 3. Nuclei with >25,000 fragments were also excluded.

Dimensionality reduction was implemented by the LSI method 
using addIterativeLSI with two iterations and cluster parameters of 
resolution of 0.1. Cell clustering was then performed using an SNN mod-
ularity optimization–based clustering algorithm, using addClusters 
with a resolution of 0.4. Retinal cell classes were identified by enrich-
ment of the following marker genes (57): GNAT2 and RHO (photo-
receptors), VSX1 and VSX2 (bipolar cells), ONECUT3 (horizontal 
cells), SLC32A1 (amacrine cells), RLBP1 (Müller glia), and OLIG2 
(oligodendrocytes). To verify that ganglion cells were absent from 
our dataset, we projected cell annotations for scRNA-seq data from 
postnatal day 0 (P0) chicken retina (described below in scRNA-seq 
analysis) onto the cells in the snATAC-seq data, as described above 
for goldfish. We failed to detect any ganglion cell clusters. Only the 
four other classes of retinal neurons and Müller glia were retained 
for subsequent analysis.
Mouse
Barcoded and aligned fragments from multiple developmental stag-
es [embryonic day 11 (E11), E12, E14, E16, E18, P0, P5, P8, P11, and 
P14] were pooled and used as input data for analysis by ArchR. 
Low-quality cells were removed if they had a transcription start site 
enrichment score <10. Putative doublets were removed using the 
filterDoublets function with a filterRatio of 2. Nuclei with >30,000 
fragments were also excluded.

Dimensionality reduction and cell clustering were performed using 
addClusters with a resolution of 0.7. A total of fourteen clusters were 
identified, comprising rod photoreceptors, cone photoreceptors, bi-
polar cells, horizontal cells/amacrine cells, ganglion cells, Müller 
glial cells, early cone photoreceptors, early rod photoreceptors, early 

neurogenic cells, late neurogenic cells, early retinal progenitor cells, 
and three stages of retinal progenitor cells. Cluster annotation was 
performed on the basis of marker genes identified in the original 
study (51). To distinguish between horizontal cells and amacrine 
cells, we projected cell annotations for developmental stage–matched 
scRNA-seq data (58) onto the cells in the snATAC-seq data, as de-
scribed above for goldfish, except for using FindClusters with a res-
olution of 0.4. Only mature retinal neurons and Müller glia were 
retained for subsequent analysis.
Human
Multiome (snRNA-seq + snATAC-seq) data were processed in a 
manner analogous to that described in the original study (53). In 
brief, for each sample, count matrices for both RNA-seq and ATAC-
seq were loaded into ArchR. Low-quality cells were removed if they 
had <200 RNA transcripts, >0.8% mitochondrial gene transcripts, 
<3000 ATAC fragments, or a transcription start site enrichment 
score <7. Putative doublets were removed using the filterDoublets 
function with a filter ratio of 5. Additional doublets were removed if 
cells expressed >25,000 RNA transcripts, >7000 genes, or >70,000 
ATAC fragments. The remaining nuclei in all preprocessed samples 
were subsequently merged into a single Seurat object. Gene expression 
counts were normalized using NormalizeData, scaled using Scale-
Data, and batch-corrected using Harmony (59). Graph-based clus-
tering was then performed on the Harmony-corrected data using the 
top 20 principal components at a resolution of 0.5. Cluster annota-
tion was performed on the basis of marker genes identified in the 
original study (53). Clusters coexpressing marker genes from differ-
ent cell classes were excluded; clusters devoid of any marker genes 
were also excluded. Only the five classes of retinal neurons and 
Müller glia were retained for subsequent analysis.

scRNA-seq analysis
scRNA-seq data for lamprey, zebrafish, and human derive from 
multiome datasets described in the preceding section. For mouse, 
scRNA-seq data and corresponding cell cluster annotations were 
retrieved from a single-cell expression atlas of adult retina (60). For 
goldfish, the raw sequence data were obtained from a published 
study (50) and processed using Cell Ranger (version 7.1.0; 10x Ge-
nomics) for read filtering, alignment against the genome, and bar-
code counting. Goldfish retinal cell–class annotations were also 
retrieved from the paper (50), and cells that were both retained in 
our analysis and included in their original cell annotations were used 
for subsequent analysis. For chicken, scRNA-seq data were generated 
in the present study from newly hatched (P0) chicken retinas. The 
raw sequence data were processed using Cell Ranger (version 7.0.0), 
and the aligned gene expression reads were loaded into Seurat. Low-
quality cells were removed if the cell contained <1000 expressed 
genes or if >10% of the cell’s total gene expression derived from mi-
tochondrial genes. Putative doublets were removed on the basis of 
the presence of >15,000 expressed genes. Count data were normal-
ized using SCTransform (Seurat), and dimensionality reduction was 
performed using RunPCA (Seurat). The significance of each princi-
pal component in the RNA analysis was evaluated manually using 
elbow plots. One to 40 dimensions (PCA) were used for identifying 
the clusters with FindNeighbors, followed by modularity optimiza-
tion with FindClusters using a resolution of 1.2. Retinal cell classes 
were identified on the basis of the expression of cell-class marker 
genes (57). Raw data acquisition and processing are described in an-
other publication (61).
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Cell-class meta-gene analysis
To devise a metric for measuring EC cell-class meta-gene activity, dif-
ferentially expressed genes were first identified using the Wilcoxon 
rank sum test. scRNA-seq datasets from the six study species (described 
above) were analyzed using FindAllMarkers (Seurat) with the follow-
ing parameters: logic.threshold  =  0, min.pct  =  0.05, and return.
thresh = 1. Differentially expressed genes were defined as those which 
exhibited an average log2-fold change >0.1, an adjusted P value <0.01, 
and a percentage of cells expressing the gene >10%. Differentially 
expressed genes were further filtered for cell class–enriched expres-
sion as follows. Pseudo-bulk gene expression was quantified for each 
cell class using AverageExpression (Seurat), and then tau (τ), a mea-
sure of cell-class specificity of gene expression, was calculated (62). 
Tau (τ) =  

∑N
i=1 (1−xi)
N − 1

 , where N is the number of cell classes, and xi is 
the expression profile component normalized by the maximal expres-
sion value. Genes with τ > 0.6 were retained for subsequent analysis.

The top 1000 genes with the highest tau index were identified for 
each cell class in each species and then intersected across the six 
study species to identify EC differentially expressed genes. To accomplish 
this task, HOGs were defined using Orthofinder described above in 
Gene orthology inference. HOGs that contained differentially ex-
pressed genes from lamprey and three or more jawed species were 
retained, and for each species, the cell class–enriched genes includ-
ed in the HOGs were defined as EC differentially expressed (ecDE) 
genes. We then retrieved GO annotations (i.e., molecular function terms) 
from Ensembl BioMart using the R package biomaRt (version 2.64.0).

Next, chromatin accessibility over the promoter and gene body 
of ecDE genes was quantified using GeneActivity (Signac). Individ-
ual gene “activity” (hereafter referred to as “accessibility”) scores 
were aggregated into a single accessibility score, referred to as “cell-
class meta-gene accessibility.” Meta-gene accessibility was quantified 
in individual cells for each cell class, and the gene accessibilities of 
both the meta-genes and the remaining genes were normalized and 
scaled in accordance with the standard protocol in Signac. The sta-
tistical significance of cell-class enrichment of the meta-genes was 
determined by comparing the cell class exhibiting the highest score 
for the meta-gene with the second-highest scoring cell class using 
the Wilcoxon rank sum test, followed by Bonferroni correction, per-
formed using Wilcox.exact in the exactRankTests package in R.

Identifying differentially accessible OCRs
Two replicates of pseudo-bulk ATAC data were generated from sub-
sets of snATAC-seq data for each retinal cell class using addGroup-
Coverages (ArchR). Consensus OCRs (201-bp peaks) were generated 
using addReproduciblePeakSet for the replicates for each cell class 
with the following parameters: extendSummits  =  100 and cut-
Off = 0.1. The peak sets from each cell class were then combined, 
and the resultant nonredundant union peak set was used for the fol-
lowing analysis. Single-cell differential accessibility tests were 
performed using FindAllMarkers (Seurat) with the following pa-
rameters: only.pos = TRUE, min.pct = 0.01, test.use = LR, latent.
vars = nCount_ATAC, and slot = counts. Peaks with an adjusted P 
value <0.01 and an average log2-fold change >0.01 were retained. In 
addition, peaks were retained if their average accessibility in pseudo-
bulk ATAC-seq data—calculated with AverageExpression (Seurat)—
was four times greater than the average of the average accessibilities 
from the other cell classes. Furthermore, cell class–enriched peaks were 
filtered if they did not overlap with peaks called in the corresponding 

cell type. The resultant peak sets were defined as differentially 
accessible peaks. Broadly open peaks were defined as all peaks 
not contained in the union of differentially accessible peaks for 
each species. Chromatin accessibility of cell class–enriched OCRs 
was visualized using deepTools (version 3.5.4) (63). The number 
of OCRs used for the following analysis is provided in table S6.

Determining cross-species alignability of cell 
class–enriched OCRs
The union of all differentially accessible OCRs for each of five 
study species (lamprey, zebrafish, chicken, mouse, and human) was 
mapped onto the reference genomes of various vertebrate species. 
Regions that overlapped with exons were excluded before map-
ping. The UCSC Genome Browser’s LiftOver utility (version 377 
in bioconda) (64) was used for mapping using a parameter min-
Match = 0.5. For this analysis, precomputed reciprocal best-hit 
whole-genome alignment (rbest.chain) files were downloaded 
from the UCSC Genome Browser website. Differentially acces-
sible OCRs in zebrafish were mapped from danRer11 onto danRer7 
and then mapped onto the reference genomes of other species us-
ing the publicly available reciprocal best chain files. Mapping be-
tween conspecific reference genomes was conducted using the 
LiftOver utility with a parameter minMatch = 0.95 and the “over.
chain” file. Similarly, lamprey OCRs were mapped from kPetMar1 
onto petMar3 with the custom chain file generated using flo (65), a 
UCSC Genome Browser command line wrapper. The evolution-
ary divergence times of all internal branches were obtained from 
timetree (66).

The decay of sequence mappability (i.e., alignability) was mod-

eled using a fitted Gompertz equation f (x) = 100e

(

a

b

)

[1−exp(bx)] , with 
divergence time as a variable. Equation fitting was performed using 
the Gauss-Newton algorithm with starting estimates (a = 0.001, b = 
0.01) and a maximum of 1000 iterations allowed in the nls function 
in the stats package (R; version 4.1.0). The resultant fitted parameter 
values were a = 0.002508772 and b = 0.006060751. The confi-
dence intervals were determined by 10,000 bootstrap samples using 
the boot_nls function in nlraa (version 0.89, https://github.com/
femiguez/nlraa).

Discovery of EC motifs
De novo motif discovery
De novo motifs (position probability matrices) were identified for 
each species using findMotifsGenome.pl (HOMER v4.11), with 
parameter -size 201. The choice of this window size (i.e., 201 bp) 
was based on a study that evaluated the performance of three ma-
chine learning models for cis-regulatory sequence detection us-
ing sequences from 20 to 600 bp as input (67). The authors found 
that all three classifiers achieved maximal or near-maximal perfor-
mance at ~200 bp and concluded that typical cis-regulatory ele-
ments are approximately the length of a nucleosome footprint and 
flanking linker sequences. A 201-bp (instead of 200 bp) window size 
was chosen to have an equal number of bases on either side of the 
summit to facilitate downstream analysis. Cell class–enriched OCRs 
were used as target sequences, and the broadly open regions were 
used as background sequences for each species. Identified motifs 
were retained for subsequent analysis if the statistical significance of 
the motif was <10−10 and if the motif was present in >2% of the cell 
class–enriched OCRs.

https://github.com/femiguez/nlraa
https://github.com/femiguez/nlraa
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Motif clustering
The motif clustering approach was adapted from a prior study (68). 
For each cell class, de novo motifs of all study species were subjected 
to pairwise comparison using Tomtom, with the following parameters: 
-dist kullback, -motif-pseudo 0.1, and -min-overlap 1. The pairwise 
comparison similarity values (E values) were calculated by multi-
plying each Tomtom-reported P value by the number of target 
motifs, and a group of −log10(E values) for each motif was then used 
to measure the Pearson correlation coefficient between two motifs. 
−Log10(E values) that exceeded 100 were capped at a maximum 
value of 100. Hierarchical clustering was performed using the aver-
age linkage comparison method with one minus the Pearson corre-
lation coefficient as the distance metric. hclust in the stats package (R; 
version 4.1.0) was used for clustering. Motif clusters were identified 
by cutting the resultant dendrogram at a height of 0.9. To eliminate 
clusters with dissimilar motifs, the median value of the Pearson cor-
relation coefficient among the most significantly enriched motifs 
from each species within a cluster was calculated, and those clusters 
with median values ≤0.5 were removed. Motif clusters were defined 
as EC if they included motifs from lamprey and three or more jawed 
species. Given the absence of chicken ganglion cells in our dataset, 
EC motif clusters in ganglion cells were only required to contain 
motifs from lamprey and two or more jawed species.

To create consensus merged motifs, the most significantly enriched 
motifs from each species in each retained cluster were subjected to 
sequence alignment, and for each position, the mean value of the 
position probability matrix was calculated using mergeMotifs [motif-
Stack (69), version 1.38.0]. Undefined flanking regions for each mo-
tif were assigned a probability of zero and included in the mean 
calculation. The merged motifs were converted from a position 
probability matrix to an information content matrix with a uniform 
background distribution of nucleotides, and then the motif flanking 
region was trimmed from either side if the information content for 
each motif position was <0.05. The resultant merged motifs were 
then compared with mammalian TF binding motifs in the HOCO-
MOCO database (v12) (23) using Tomtom.

Analysis of cis-regulatory grammar
Motif scanning
To identify occurrences of motifs, OCRs were scanned for motifs 
using scan_sequences (universalmotif; version 1.16.0; https://github.
com/bjmt/universalmotif), retaining the highest-scoring motif if two 
motifs overlapped. The cutoff thresholds for calling motifs were cal-
culated as the median of thresholds identified by HOMER across 
species. The background nucleotide frequencies were set to those 
observed in the corresponding cell class–enriched 201-bp OCRs for 
each of the six species.
Motif distribution and affinity
To graph motif distributions and affinities within OCRs, the median 
PWM score and motif density per nucleotide were calculated. The 
per-nucleotide values were further smoothed using a 101-bp sliding 
window centered on the nucleotide in question.
Motif co-occurrence
For each pair of motifs, the number of OCRs with at least one pair 
was counted. Co-occurrences involving two overlapping motifs, re-
gardless of the strand, were excluded. The enrichment of co-occurrence 
was then calculated as the ratio of the frequency of motif pairs in cell 
class–enriched OCRs to the frequency of motif pairs in background 
OCRs. A total of 50,000 background sequences were semirandomly 

selected from the set of broadly open regions using homer2 bg 
(HOMER; version 5.1) with parameters: -ikmer 2 -N 50000 -NN 
100000000. In this way, the distribution of dinucleotide frequencies 
in background sequences was matched to that in the target cell 
class–enriched OCRs.
Motif spacing
To identify preferential spacing between motifs, the distance between 
the primary and secondary motifs in cell class–enriched OCRs was 
quantified. Two relative distances to the primary motif were mea-
sured: the distance between the 5′ nucleotide of the primary motif 
and the 3′ nucleotide of the secondary motif, and the distance be-
tween the 3′ nucleotide of the primary motif and the 5′ nucleotide 
of the secondary motif. The distance between the two motifs was 
determined by selecting the value closest to zero. If the secondary 
motif was found to be 3′ downstream of the primary sequence, the 
length of the primary motif was added to this distance, ensuring that 
the distance was always measured from the 5′ nucleotide of the pri-
mary motif. The number of instances of the secondary motif at all 
nucleotide positions on both strands between ±40 bp relative to the 
primary motif was tallied.

Nominating cognate TFs for EC motifs
To identify cognate TFs that might bind EC motifs, merged motifs 
were compared with mammalian TF-binding motifs in the HOCO-
MOCO database (v12) (23) using Tomtom (22). To nominate cognate 
TFs across the six study species, we assumed that homologous TFs 
belonging to the same HOG (see Gene orthology inference) exhibit 
similar binding preferences. Zinc finger proteins belonging to the 
largest OG were excluded from this analysis on account of the extensive 
divergence of binding preferences among zinc finger proteins, which 
is well-attested (70).

Next, scRNA-seq data were used to identify TFs exhibiting cell class–
enriched expression in each of the six study species. Differential expres-
sion was determined using the Wilcoxon rank sum test in FindAllMarkers 
(Seurat) with the following parameters: logfc.threshold = 0, only.
pos = FALSE, min.pct = 0.0001, return.thresh = 1, assay = “RNA.” 
Candidate cognate TFs were retained if the corresponding motif simi-
larity value (q value in the Tomtom output) was <10−1, and the sig-
nificance of the cell-class enrichment (adjusted P value in the output 
of the differential expression test) was <10–1.5.

Training and comparison of gkm-SVM models
Model training and validation
Two hundred–base pair OCRs identified from snATAC-seq data in 
the six study species were used for training gkm-SVM models (31). 
Differentially accessible OCRs in each of the six retinal cell classes 
were used as the positive training set, and broadly open OCRs from 
the same species were used as the negative training set. For each 
species, the same number of positive and negative OCRs were used 
for training and testing. The datasets were randomly divided into five 
equal groups, ensuring that each group was nonoverlapping, and a 
fivefold cross-validation was performed. Models were trained using 
LS-GKM (version 0.1.0) (71) with the following parameters: a linear 
gkm kernel without center weight (kernel 2), L = 11, K = 7, and C = 1.

Trained models were used to score all test sets within each cell 
class of each species. ROC-AUC scores were calculated on the basis 
of the scores of the corresponding positive and negative test sets us-
ing ROCR (version 1.0-11) (72). The overall performance of the 
models was determined by measuring the mean and SD of ROC-AUC 

https://github.com/bjmt/universalmotif
https://github.com/bjmt/universalmotif
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scores from the five independent replicates of the fivefold cross-
validation models.
Model interpretation
The contribution score of each nucleotide in the OCRs to the clas-
sification was computed using gkmexplain (release version 1.0.0) 
(32). The importance scores for the mouse Gnb3 promoter were cal-
culated for photoreceptor and bipolar cell models of all study spe-
cies except mouse. Both importance and hypothetical importance 
scores were calculated using the gkmexplain command, and the im-
portance scores were normalized to the hypothetical importance 
score per developer’s recommendation. The resultant normalized 
importance scores were averaged among five model replicates ob-
tained by fivefold cross-validation (described above).
Model clustering
All possible 11-mer sequences were scored with the gkm-SVM 
models using the gkmpredict command. The resultant scores were 
averaged among five model replicates obtained by fivefold cross-
validation for each cell class of each species. The 200 highest-scoring 
11-mers were selected for each model and merged to create a union 
of the best-scoring 11-mers (4276 11-mers in total). Agglomera-
tive hierarchical clustering was performed using one minus the 
Pearson correlation coefficient as a distance metric and Ward’s 
minimum variance method, using hclust in the stats package (R; 
version 4.1.0). The statistical significance of a branching node 
was calculated using the pvclust package (version 2.2-0, https://
github.com/shimo-lab/pvclust), where the approximately unbiased 
P value for selective inference (P value) was calculated by bootstrap 
resampling analysis followed by a multiscale resampling imple-
mented in pvclust. The tree was visualized using the ggtree package 
(version 3.10.1). The silhouette score of each gkm-SVM model 
was measured using silhouette in the cluster package (version 
2.1.2). The resulting scores were averaged across models within 
a cluster and subsequently averaged across clusters to evaluate 
cluster robustness.
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