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ABSTRACT 
The identification of homologous cell types across species represents a crucial step in understanding cell 
type evolution. The retina is particularly amenable to comparative analysis because the basic morphology, 
connectivity, and function of its six major cell classes have remained largely invariant since the earliest 
stages of vertebrate evolution. Here, we show that the retina’s highly conserved cellular architecture is 
mirrored by deep conservation of the underlying cis-regulatory codes that control gene expression. We use 
comparative single-cell chromatin accessibility analysis of lamprey, fish, bird, and mammalian retinas—
representing over half a billion years of evolutionary divergence—to demonstrate cross-species 
conservation of cis-regulatory codes in all six retinal cell classes. This conservation persists despite 
extensive turnover of cis-regulatory regions between distant species. Conservation manifests as the 
clustering of multiple distinct high-affinity transcription factor (TF) binding sites toward the center of cell-
class-specific open chromatin regions with little cross-species preservation of higher-order syntax. 
Hierarchical clustering of machine-learning models of retinal cis-regulatory codes from diverse species 
recovers six clusters corresponding to the six retinal cell classes. Thus, the retina’s cellular Bauplan is 
controlled by cis-regulatory codes which predate the divergence of extant vertebrates and persist despite 
nearly complete enhancer turnover. 

 
 

Introduction 
The evolutionary origin of cell types is a subject of enduring fascination1-4. To infer the existence of specific cell types in 
the common ancestor of extant vertebrates—a species that lived ~560 million years ago—it is necessary to compare 
homologous cell types between the two most evolutionarily distant vertebrate taxa: the jawless fishes (i.e., lampreys and 
hagfishes) and the jawed vertebrates (cartilaginous and bony fishes, amphibians, reptiles, birds, and mammals). The 
vertebrate retina is an ideal system for inferring cellular and molecular features that existed in the common vertebrate 
ancestor, because its basic features—cell classes, connectivity patterns, and function—are remarkably conserved among all 
vertebrate taxa5-7, including between jawed and jawless species8-10 (Fig. 1a, b). Nearly all vertebrate retinas contain six major 
cell classes (photoreceptors, bipolar cells, horizontal cells, amacrine cells, ganglion cells, and Müller glia)7. Each cell class—
with the exception of Müller glia— consists of multiple closely related ‘sister’ cell types—expressing divergent sets of 
effector genes but retaining many shared transcriptional regulators—which arose via duplication and divergence from a 
single ancestral cell type1,2,11. In the course of evolution, individual vertebrate species have expanded or contracted the 
number of cell types within each cell class to adapt to specific light environments or lifestyles6,12,13. Thus, vertebrate retinas 
display remarkable cell type diversity couched within an evolutionarily stable framework of six invariant cell classes. 
 Cell class- and type-specific transcriptomes are determined by the action of transcriptional regulatory networks, 
which consist of hierarchical cascades of TFs that bind to cognate binding sites within cis-regulatory elements (i.e., 
enhancers and promoters) to regulate gene expression and determine cell type identity14,15. A ‘cis-regulatory code’ or 
‘grammar’ is the particular combination and arrangement of TF binding sites within cis-regulatory elements that drives 
expression in a specific cell type or class. In the present study, we sought to determine whether the cis-regulatory codes 
governing retinal class-specific gene expression are conserved across vertebrates, including between jawed and jawless 
species. Indeed, we find that the architectural invariance of the vertebrate retina is mirrored by deep conservation of the 
underlying cis-regulatory codes and that these codes emerged in the common ancestor of extant vertebrates more than half 
a billion years ago.  
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Results 
Single-cell chromatin accessibility profiling of vertebrate retinas 
To determine the evolutionary antiquity of the cis-regulatory codes that govern gene expression in the vertebrate retina, we 
carried out a systematic analysis of TF binding sites in the retinal cell class-enriched open chromatin regions of six diverse 
vertebrate species (Fig. 1). These species inhabit a wide range of photic environments and have correspondingly evolved 
divergent retinal cell type inventories7,16. Thus, it is impossible to define one-to-one homology relationships for individual 
cell types across all species. We therefore focused our analysis on cell class-specific cis-regulatory codes. To accomplish 
this task, we acquired published retinal single-cell gene expression profiling (scRNA-seq) and single-nucleus chromatin 
accessibility (snATAC-seq) data from two teleost fishes (zebrafish and goldfish) and two placental mammals (mouse and 
human). To broaden our phylogenetic sampling, we additionally conducted single-cell analyses on retinas from chicken 
(Gallus gallus) and sea lamprey (Petromyzon marinus), a jawless species. We examined these six datasets—generated by 
distinct protocols and from diverse sources—using either Signac/Seurat or ArchR, depending on whether the data were 
generated by multiome (snRNA-seq + snATAC-seq) or snATAC-seq analysis, respectively. After initial pre-processing to 
remove low-quality cells, we performed dimensionality reduction followed by shared nearest neighbor modularity 
optimization-based clustering. For each species, we assigned clusters to one of the six retinal cell classes, either based on 
the expression of known class-specific marker genes in those species for which multiome data was available (lamprey, 
zebrafish, and human), or based on chromatin openness at the promoters of class-specific marker genes in those species for 
which multiome data was not available (goldfish, chicken, and mouse). We removed from the analysis any residual clusters 
which could not be assigned to one of the major retinal cell classes. In this way, we identified clusters corresponding to each 
of the six retinal cell classes in all six species, with the exception of chicken ganglion cells, which were absent from the 
snATAC-seq dataset, though present in scRNA-seq data (Fig. 1c; Supplementary Fig. 1).  
 Next, we sought to determine whether our cluster annotations are reflective of shared patterns of chromatin openness 
at class-enriched gene loci. To achieve this goal, we devised a quantitative measure of class-specific chromatin openness 
for each of the six retinal cell classes. First, we used scRNA-seq data to define evolutionarily conserved class-specific ‘meta-
genes’ consisting of a set of genes that were differentially expressed across cell classes and had a high class-specificity 
index in lamprey and three or more of the jawed species (see Methods). We then measured chromatin openness over the 
promoter and gene body of each gene in the meta-gene and aggregated the values to create a single ‘meta-gene openness’ 
score for each of the six cell classes in each of the six species (except for chicken ganglion cells; see above). We found that 
in all comparisons the meta-gene openness score was highest for the expected cell class (Fig. 1d). These findings validate 
our cluster annotations and confirm that class-specific signatures of chromatin openness are shared across all six species.  
 
Extensive enhancer turnover during vertebrate evolution 
Next, we wished to determine if retinal class-specific cis-regulatory elements show sequence-level conservation across 
species. Cis-regulatory elements typically occur in chromatin regions that are selectively open in the cell type(s) in which 
the element is active. For example, we previously showed extensive overlap between photoreceptor-enriched open 
chromatin regions and the location of photoreceptor-specific enhancers and promoters across the mouse genome17,18. We 
therefore decided to use class-enriched open chromatin regions (OCRs) as a surrogate for class-enriched cis-regulatory 
elements in the present analysis. To quantify the extent of sequence-level conservation of class-enriched OCRs across 
species, we used single-cell data to create pseudo-bulk ATAC-seq profiles for each of the six retinal cell classes in five 
species: lamprey, zebrafish, chicken, mouse, and human (except for chicken ganglion cells; see above). We identified class-
enriched OCRs for each retinal cell class in each species using a test of differential chromatin accessibility (Supplementary 
Fig. 2; see Methods). We then employed the UCSC Genome Browser’s LiftOver utility to map the union of each species’ 
class-enriched OCRs onto all other vertebrate reference genomes for which pre-computed reciprocal best-hit whole-genome 
alignment files were publicly available. In this way, we quantified ‘alignability’ as the percentage of a species’ class-
enriched OCRs which could be aligned with the genome of the target species (see Methods for details). We found that 
sequence alignability of retinal class-enriched OCRs progressively decayed with evolutionary distance such that beyond 
~400 million years (Mys) fewer than 3% of OCRs were alignable with the target genome (Fig. 2; Supplementary Table 1). 
For example, the average alignability at 430 Mys (the distance between ray-finned fishes and amniotes) was 1.35%, while 
the average alignability at 563 Mys (the distance between jawed and jawless species) was 0.52%. We therefore infer that 
vertebrate cis-regulatory element turnover is extensive at great evolutionary distances.  
 To model the decline in OCR alignability over time, we fitted the data with a Gompertz equation, which is often 
used to model the growth or decay of populations. We observed close agreement with the model at short (i.e., <50 Mys) 
and long (>280 Mys) evolutionary distances but found major deviations from the model at middle distances (50-280 Mys) 
(Fig. 2; Supplementary Table 1). The greatest downward deviations—indicative of more extensive turnover than predicted 
by the model—were observed in mouse/human-to-mammal comparisons, particularly at ~90 Mys (i.e., mouse/human-to-
placental comparisons), 160 Mys (mouse/human-to-marsupial), and 180 Mys (mouse/human-to-monotreme) (Fig. 2). These 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.13.623372doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.13.623372


deviations are likely attributable to accelerated rates of evolution in certain mammalian clades19,20. Conversely, we observed 
unexpectedly low rates of OCR turnover in chicken-to-bird comparisons (~90 Mys) and chicken-to-alligator/turtle 
comparisons (240-260 Mys), while chicken-to-lizard/snake comparisons (280 Mys) largely agreed with the model (Fig. 2). 
Despite wide variation in the rates of alignability at middle evolutionary distances, both the data and the model suggest 
nearly complete (i.e., ~99.5%) evolutionary turnover of retinal class-specific cis-regulatory elements beyond 500 million 
years. 

 
Deep conservation of retinal cis-regulatory codes 
We and others observed conserved patterns of expression of class-specific genes despite extensive turnover of the cis-
regulatory elements controlling their expression (Supplementary Table 2)7,9. We therefore hypothesized that the underlying 
cis-regulatory codes might be conserved despite an absence of linear sequence conservation. To test this idea, we undertook 
a detailed comparative analysis of retinal class-specific cis-regulatory codes. The fundamental building blocks of a cis-
regulatory code are TF binding sites. Thus, as a first step toward elucidating the retinal codes, we used HOMER21, a TF 
binding site motif discovery algorithm, to comprehensively identify motifs enriched within 201-bp regions centered on the 
summits of class-specific OCRs of six species. All existing motif databases derive from in-depth study of a small number 
of species. Thus, to avoid biases that might be introduced by focusing on ‘known’ motifs, we used HOMER to detect de 
novo motifs. HOMER identifies enriched motifs by comparing an ‘experimental’ set of target sequences with a set of control 
sequences. We therefore used class-enriched OCRs as our experimental dataset and a set of OCRs broadly open across 
multiple cell classes as our controls (Fig. 3a). HOMER generates a list of motifs in the form of a position probability matrix 
accompanied by an optimal detection threshold to maximize the enrichment of the motif in the target sequences. To ensure 
detection of relatively low-frequency but functionally important motifs, we retained all motifs whose statistical significance 
of enrichment was <10-10 (calculated using the binomial distribution) and which were present in >2% of the cell-class 
enriched OCRs. We analyzed a total of 35 datasets (i.e., six species × six cell classes, except for chicken ganglion cells), 
identifying a median of 47 de novo motifs in each dataset, with a minimum of eight motifs observed for lamprey Müller 
glial cells, likely due to the small number of these cells in our dataset (Supplementary Table 3).   
 Next, we sought to compare class-specific motifs across species to determine if diverse vertebrates utilize a shared 
set of motifs in each retinal cell class. To accomplish this goal, we used Tomtom22 to conduct pairwise motif comparisons 
and then hierarchically clustered motifs based on their similarity scores. HOMER often identifies multiple related motifs; 
thus the several dozen de novo motifs discovered for a given cell class in an individual species may correspond to a smaller 
set of truly distinct motifs. By including all identified motifs for a given cell class in our hierarchical clustering, we can both 
delineate intraspecific motif redundancy and identify interspecific similarities in motif inventory.  

Visual inspection of motif similarity matrices for each of the six retinal cell classes reveals multiple well-defined 
clusters of motifs for each cell class (Fig. 3b). Motifs in these clusters typically exhibit some of the highest ‘motif 
enrichment’ scores (Fig. 3b; see Methods). Additionally, some motif clusters are quite large, encompassing as much as ~35-
50% of the motifs in a given cell class (e.g., in photoreceptors, bipolar cells, and horizontal cells), underscoring the presence 
of motif redundancy in the HOMER outputs. Importantly, within individual clusters we typically find motifs from multiple 
species, indicative of cross-species conservation of motifs. To define discrete motif clusters likely corresponding to 
individual conserved motifs, we truncated the motif dendrogram (obtained by hierarchical clustering) at a height of 0.9 
(equal to one minus the Pearson correlation coefficient of motif similarity values). We then designated a motif cluster as 
‘evolutionarily conserved’ if it included motifs from both jawless (i.e., lamprey) and three or more jawed species, and if the 
median of the Pearson correlation coefficient among the motif similarities of the most enriched motifs from each species 
within a cluster was greater than 0.5 (Fig. 3b and 3c; see Methods). For each evolutionarily conserved motif cluster, the 
motifs with the highest ‘motif enrichment’ score from each species were aggregated into a single ‘merged motif’ (see 
Methods), which we designated as an ‘evolutionarily conserved motif’ (EC motif) (Fig. 3c and Supplementary Fig. 3). In 
this way, we identified a total of 16 EC motifs, with two to four motifs in each retinal cell class (Fig. 3b, d). We propose 
that these motifs formed part of the retinal cis-regulatory codes of the most recent common ancestor of extant vertebrates 
based on their enrichment in both jawed and jawless species. 

The close similarity of the species-specific position probability matrices used to create merged EC motifs suggests 
that these motifs are bound by homologous TFs with very similar DNA-binding preferences across species. To nominate 
TFs likely to bind these EC motifs, we used Tomtom to compare EC motifs to known motifs in HOCOMOCO23, a curated 
database of mouse and human TF binding site motifs. We found that all EC motifs showed highly significant matches to 
one or more motifs in the database (Supplementary Fig. 3 and Supplementary Table 4). For example, the most enriched EC 
motifs in photoreceptors (PH_13) and bipolar cells (BC_11) are very similar to each other and closely match paired-type 
‘K50’ homeodomain binding sites (‘K50’ denoting the presence of lysine at position 50 of the homeodomain) bound by 
CRX and/or OTX2 in the HOCOMOCO database. These TFs are both expressed in mammalian photoreceptor and bipolar 
cells and play critical roles in controlling development and gene expression in these cell classes24,25. Indeed, most of the EC 
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motifs show matches to binding sites of mammalian TFs previously shown to play key roles in regulating gene expression 
in their respective cell classes (Supplementary Table 4)26,27.  

We postulated that the non-mammalian species in our study likely also express TFs in their respective cell classes 
with similar binding preferences to those of their mammalian counterparts. To test this idea, we mapped the candidate 
mammalian TFs onto their closest homologs in the non-mammalian species using OrthoFinder28. We then intersected the 
resultant TF orthology groups with lists of differentially expressed genes obtained from single-cell RNA-seq profiling of 
retinas from each of the six species. For 12 of the 16 EC motifs, we were able to identify cognate orthologous TFs whose 
expression was enriched in the corresponding cell class in jawless and four or more jawed species (Supplementary Table 4; 
see Methods). This finding suggests that cross-species conservation of class-enriched motifs is paralleled by cross-species 
conservation of cognate TF expression.  

Next, we sought to systematically determine which features of class-specific cis-regulatory grammar are conserved 
across species. Cis-regulatory grammar can be subdivided into two components: ‘vocabulary’ consisting of the occurrence, 
affinity, and location of individual motifs within an OCR; and ‘syntax’ comprising the co-occurrence, spacing, and relative 
orientation of pairs of motifs in an individual OCR (Fig. 4a). So far we have identified significant class-specific enrichment 
of 16 EC motifs (Fig. 3). We next determined the spatial distribution of these motifs within class-enriched OCRs and 
quantified their position-weight-matrix (PWM) scores, a surrogate measure of binding affinity. We found that most motifs 
display a Gaussian-like distribution of enrichment conserved across species with a peak centered on the OCR summit (Fig. 
4b). PWM scores also peaked at the OCR summit (Fig. 4b).  In most cases, both motif enrichment and PWM scores declined 
monotonically with distance from the summit, approaching baseline levels around ±100 bp. These results indicate that 
features of cis-regulatory vocabulary are largely shared across motifs and species. 

To ascertain whether syntactic features are conserved across species, we analyzed the co-occurrence, spacing, and 
relative orientation of all homo- and heterotypic pairs of EC motifs enriched in the same cell class (Figure 4a). As expected 
from the centralized pattern of enrichment of individual motifs (Fig. 4b), we observed enriched co-occurrence of all motif 
pairs—with the exception of GC_9 + GC_9—across all six species (Supplementary Fig. 4). In contrast, we observed little 
evidence for conserved patterns of relative motif spacing or orientation (Supplementary Fig. 5). One motif, BC_11, shows 
enrichment of tandem pairs with an intersite spacing of 8-11 bp (i.e., approximately one helical turn), but this pattern is only 
conserved across jawed species (i.e., not in lamprey). A similar pattern of co-occurrence of monomeric K50 homeodomain-
type motifs was previously noted in CRX ChIP-seq peaks of mouse photoreceptors29. The related photoreceptor-enriched 
K50-type motif identified in the present study (PH_13) is a dimeric motif18. We therefore re-analyzed our photoreceptor-
enriched OCRs using a monomeric K50 motif, which revealed helical co-occurrence of motif pairs similar to that observed 
for BC_11 (Supplementary Fig. 5b). Again, this co-occurrence pattern appears to be restricted to jawed species. We also 
detected a distinctive pattern of motif co-occurrence for the Müller glia-enriched HMG/SOX-type motif, MG_16, which 
consisted of pairs of motifs on opposite strands of the double helix, separated by four or five base pairs (Supplementary Fig. 
5). This pattern of co-occurrence was conserved across all species including lamprey and likely represents a binding site for 
homo- or heterodimeric SOXE TFs (i.e., SOX8, SOX9, and SOX10), as previously described30. Indeed, we found that 
SOXE-type TFs showed Müller glia-enriched expression in all six species (Supplementary Table 4). We therefore consider 
this dimeric site to represent a single motif occurrence and not a feature of higher-order syntax. Thus, although almost all 
motif pairs show higher rates of co-occurrence than in control regions, few other higher-order syntactic features are shared 
between jawed and jawless species.  

 
Machine learning models of cis-regulatory grammar cluster by cell class 
To enable quantitative comparison of class-specific cis-regulatory grammars across species, we trained machine learning 
models of grammar for each of the six cell classes in each of six species (with the exception of chicken ganglion cells). In 
light of the findings in the preceding section, we decided to build minimal vocabulary-based models that encompass only 
two key features of cis-regulatory grammar: the presence/absence of motifs and motif affinity. For this purpose, we 
constructed gapped k-mer support vector machine (gkm-SVM)31 classifiers to distinguish cell class-enriched OCRs (i.e., the 
positive training set) from broadly open chromatin regions (the negative training set). We constructed a total of 35 gkm-
SVM models by randomly partitioning each training dataset into five subsets and performing 5-fold cross-validation (see 
Methods). We then used the five resultant models for each dataset to score the 35 test sets from each cell class and species. 
We measured the performance of the models by calculating the receiver operating characteristic (ROC) curve and the 
corresponding area under the curve (AUC) (Supplementary Fig. 6). For same-dataset validation, the mean ROC-AUC value 
for the 35 models was 0.854 (± 0.049 SD), with the best performance observed with the mouse horizontal cell model (0.920 
± 0.004 SD) and the worst performance with the lamprey amacrine cell model (0.733 ± 0.004 SD). Next, we evaluated the 
ability of the models to classify OCRs in the 34 other datasets. The average cross-species performance of models on other-
class OCRs (e.g., lamprey photoreceptor model classifying mouse horizontal cell OCRs) was essentially random (ROC-
AUC = 0.520 ± 0.086 SD) and provides an empirical estimate of baseline model performance. In contrast, for photoreceptor, 
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bipolar cell, horizontal cell, and Müller glial models, we observed good performance in classifying same-class OCRs from 
different species, with all ROC-AUC scores above baseline performance, except for the lamprey Müller glial model whose 
performance was borderline overall, but consistently better for same-class OCRs than other-class OCRs (0.60-0.69 
compared to 0.487 ± 0.030 SD) (Supplementary Fig. 6). The relatively poor performance of the lamprey Müller glial model 
is likely attributable to the small number of Müller glia identified in our snATAC-seq analysis and the corresponding paucity 
of class-enriched OCRs (151 sequences in total) available for model training (Supplementary Tables 5, 6). We observed 
comparable cross-species performance for amacrine and ganglion cell models, except for the zebrafish and goldfish models, 
which demonstrated excellent performance on each other’s datasets (ROC-AUC ≥ 0.80) but worse performance on non-
teleost datasets (see Supplementary Fig. 6). Overall, the cross-species classificatory performance of these models confirms 
the existence of universally shared class-specific grammar features. 
 To evaluate the ability of these models to predict functionally important transcription factor binding sites across 
species, we used them to analyze the mouse Gnb3 promoter, which drives expression in both photoreceptors and bipolar 
cells. We previously showed that this promoter contains five phylogenetically conserved K50 homeodomain binding sites, 
two of which are required for photoreceptor and bipolar expression11. We used photoreceptor and bipolar cell models trained 
on lamprey, zebrafish, goldfish, chicken, and human datasets to score the mouse Gnb3 promoter. To visualize the 
contribution of individual nucleotides to the overall model scores, we used GkmExplain32, a feature attribution method 
which displays the predicted relative contribution of individual nucleotides as a sequence logo. All ten models (i.e., five 
photoreceptor and five bipolar cell models) produced highly concordant sequence logos, attributing particular importance 
to the two K50 motifs required for promoter activity (Supplementary Fig. 7). In fact, mutations of the highest-scoring 
nucleotides in all models (in motifs #2 and #4) result in a severe reduction of promoter activity (Supplementary Fig. 7). 
These findings demonstrate that cis-regulatory models from evolutionarily distant species are able to predict functionally 
important motifs—and even individual nucleotides—with great precision. 

To evaluate the similarity and relatedness of models across species, we quantified the pairwise distances between 
models and used the resultant data to hierarchically cluster them. To accomplish this task, we first used the models to score 
all possible 11-mers, extracted the top 200 highest-scoring 11-mers for each model, and combined them to define a set of 
4,276 unique 11-mers. We found that 53.8% (2,300 out of 4,276) of these 11-mers contain EC motifs, indicating that these 
models capture grammar features identified in the preceding section as well as additional features not detected by our motif-
based approach. Next, we measured the pairwise distance between models by calculating the Pearson correlation coefficient 
between each model’s scores for the 4,276 11-mers (Fig. 5b). We then hierarchically clustered the models using one minus 
the Pearson correlation coefficient as a distance metric. The resulting hierarchical clustering revealed that the models group 
by cell class, not by species (Fig. 5c). The cell-class clusters aggregate into two super-clusters, one comprising photoreceptor 
and bipolar cell models, and the other comprising all other models. This higher-order grouping likely reflects the 
fundamental distinction between grammars dominated by the presence of K50 homeodomain binding site motifs 
(photoreceptor and bipolar cell grammars) and those that are not. Consistent with these results, we calculated a silhouette 
score—a metric used to evaluate the stability and robustness of clusters—and found that it culminated with the formation 
of six clusters (Supplementary Fig. 8). In summary, the robust co-clustering of retinal cell-class models from both jawed 
and jawless species highlights the deep evolutionary conservation of retinal cis-regulatory codes. 

Discussion 
The fundamental cell class architecture of the vertebrate retina has remained largely unchanged over more than 500 million 
years of evolution. Utilizing single-cell chromatin profiles of retina from lamprey, zebrafish, goldfish, chicken, mouse, and 
human, we investigated cis-regulatory grammar and evaluated cross-species homology at the resolution of the cell class. 
Cross-species comparison of cis-regulatory grammar features revealed deep conservation of class-specific motif vocabulary 
but little preservation of higher-order syntax between jawed and jawless species. We identified between two and four EC 
motifs for each retinal cell class, underscoring the combinatorial nature of eukaryotic cis-regulatory codes33. Although we 
did not detect consistent patterns of motif spacing or orientation between jawed and jawless species, the central enrichment 
of motifs within OCRs results in a tendency for co-occurring motifs to cluster near the OCR summit. Pairwise comparison 
of machine-learning models of cis-regulatory grammar demonstrated close similarity of models within retinal cell classes, 
highlighting the evolutionary antiquity of vertebrate retinal cis-regulatory codes. We also observed higher-order grouping 
of models, possibly reflective of deeper ‘sister’ relationships among retinal cell classes as previously demonstrated for 
photoreceptors and bipolar cells11. Overall, these findings confirm that the six class-level cis-regulatory codes controlling 
vertebrate retinal gene expression arose in the common ancestor of extant vertebrates more than half a billion years ago and 
persist despite near-total enhancer replacement.  
 In the course of evolution novel cell types can arise via ‘duplication’ of a single ancestral cell type into two 
descendant daughter cell types, which subsequently evolve distinctive cellular features via a process known as 
‘individuation’2. Shared cellular features may arise via evolutionary convergence in cell types derived from remote lineages. 
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Thus, the expression of effector genes controlling cell type-specific features—for example, the expression of opsins in 
photoreceptor types—is often a poor guide to the underlying evolutionary relationships of cell types. In contrast, the 
transcriptional regulatory networks which control expression of effector genes often persist for long evolutionary periods 
and are therefore more stable objects for evolutionary comparison. For this reason, Arendt and colleagues previously 
proposed that the presence of sets of terminal selector transcription factors—dubbed ‘core regulatory complexes 
(CoRCs)’—should be used to define cell types and trace their evolutionary origins2,34. The most common method for 
evaluating CoRCs is to measure the expression of TFs in individual cell types. However, most cell types express dozens of 
TFs, and it can therefore be difficult, without a priori knowledge, to prioritize factors for evolutionary comparison based 
on expression pattern alone. The present study introduces a methodologic solution to this problem: by elucidating the cis-
regulatory codes of individual cell types or classes, it is possible to nominate the most likely cognate TFs that bind the 
enriched motifs which comprise the primary feature of cis-regulatory grammar.  

Another reason why cis-regulatory codes may be a more reliable guide to deep evolutionary relationships than TF 
expression alone is that differential TF paralog choice may obfuscate shared patterns of TF usage in homologous cell types 
across species. For example, in mammals, the Maf family transcription factor Nrl is required for rod photoreceptor cell fate 
determination and gene expression35. Yet, while bird retinas contain rod photoreceptors36, avian genomes lack the NRL 
gene37. Instead, avian rods express another Maf transcription factor MAFA38,39, which is thought to play an analogous 
regulatory role to that of Nrl in mammals39,40. Similarly, while nrl is required for rod development in zebrafish larvae, it is 
dispensable for rod cell fate in adult fish41. This differential requirement might be explained by the fact that zebrafish co-
express two Maf family members in rods, nrl and mafba, and either of these factors could contribute to maintenance of rod 
gene expression42. Thus, diverse vertebrates appear to have co-opted different Maf family TFs for the same regulatory 
purpose in rods. These various Maf family members bind similar motifs43, suggesting that shared patterns of motif 
enrichment within OCRs could inform evolutionary comparison despite differential paralog usage across species. Thus, in 
the face of both extensive enhancer turnover and differential TF paralog choice, comparison of cis-regulatory codes may be 
the most reliable method for defining interrelationships among evolutionarily distant cell types.  

The remarkable evolutionary stability of cis-regulatory codes is likely attributable to their instantiation in thousands 
of enhancers across the genome and the lack of an evolutionary mechanism for coordinate changes in multiple genomic 
regions. If a mutation in a TF changes its DNA-binding preference, it could result in a catastrophic failure of binding across 
the genome and widespread perturbations of gene expression. Conversely, mutations in an individual enhancer motif might 
render the enhancer inactive unless its cognate TF undergoes simultaneous changes in its binding preference; yet such 
changes would, in turn, render the TF incapable of binding other enhancers. For these reasons, it appears that cis-regulatory 
codes and TF binding preferences are interlocked and exceptionally resistant to evolutionary change.  
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Methods 
Animal Husbandry 
Lamprey. Downstream- and upstream-migrant sea lamprey (Petromyzon marinus) were provided to us by the Hammond 
Bay Biological Station of the US Geological Survey, Millersburg, MI, USA. Downstream migrant lamprey was captured 
by drift net in the St. Marys River while they were in the process of migrating to Lake Huron to begin the parasitic stage of 
the life cycle. Adult lamprey was captured in tributaries of Lake Huron (Ocqueoc River and Cheboygan River) in the process 
of their upstream spawning migration. Downstream- and upstream-migrant lamprey were kept in well-aerated tanks in cyclic 
12L/12D h lighting in accordance with the rules and regulations of the NIH guidelines for research animals, as approved by 
the Institutional Animal Care and Use Committee of the University of California, Los Angeles. 
 
Chicken. Fertilized specific-pathogen-free white leghorn chicken (Gallus gallus) eggs (Charles River Laboratories) were 
incubated at 38°C until hatching. Chicks were maintained in groups of 3–5 individuals under constant illumination from a 
heat lamp and were provided Purina Start & Grow medicated feed (Purina Animal Nutrition LLC) and tap water ad libitum 
until retinas were harvested. Chicken husbandry and experimental procedures were carried out in accordance with United 
States National Institutes of Health guidelines44 and approved by the Washington University in St. Louis Animal Care and 
Use Committee (protocol #22-0430). 
 
Lamprey retina RNA-seq and transcript annotation 
To improve retinal gene annotations in lamprey, Iso-Seq was performed on retinas of upstream-migrants. Lampreys were 
deeply anesthetized with 400 mg/L tricaine methanesulfonate (MS-222; E10521, Sigma–Aldrich), decapitated, and 
enucleated. After removing the anterior chamber and the vitreous body from the eye, the retina was isolated from the retinal 
pigment epithelium in HEPES-buffered Ames' solution at room temperature, flash frozen in liquid nitrogen, and stored at -
80°C. Total RNA was extracted using Trizol and purified using an RNeasy Mini Kit (Qiagen). A SMRTbell Iso-Seq library 
was prepared according to the manufacturer’s protocol (Pacific Biosciences). The library was then sequenced using a single 
PacBio Sequel II SMRT cell. Demultiplexed PacBio circular consensus sequences (CCS)-generated HiFi reads with a 
predicted accuracy ≥Q20 were first processed using lima in (isoseq3; v.3.4.0; http://isoseq.how/) for 5’ and 3’ primer 
removal with parameters (--iso-seq --peek-guess). PolyA+ tails and artificial concatemers were trimmed and removed using 
refine (isoseq3) with the parameter (--require-polya), resulting in Full-Length Non-concatemer Reads (FLNC). Clustering 
was performed using the partial order alignment (POA) algorithm using cluster (isoseq3) with the parameter (--use-qvs). 
For the identification of unidentified isoforms in the lamprey retina, the resultant high-quality consensus sequences were 
mapped to the genome (kPetMar1) using minimap245 with the following parameters: -ax splice -u f. StringTie (v2.2.1) was 
then used (with the command line option –L) to assemble a new transcriptome based on the mapped Iso-Seq reads. StringTie 
was then run again (with the command line option "merge -F 0 -T 0") to obtain an updated transcriptome annotation. This 
annotation incorporated modifications to transcript body definitions from the existing National Center for Biotechnology 
Information (NCBI) Reference Sequence (RefSeq)  reference (GCF_010993605.1) and novel transcripts supported by the 
Iso-Seq reads. 
 
Gene orthology inference 
To infer orthologous genes among evolutionarily diverse vertebrate species, we employed Orthofinder28, which defines an 
orthogroup (OG) as a set of orthologous and paralogous genes that can be used as an object for comparative analysis. In 
principle, an OG contains the set of genes that are descended from a single gene in the last common ancestor of all the 
species being considered. Several representative vertebrate and non-vertebrate species (vase tunicate, clubbed tunicate, 
hagfish, brook lamprey, skate, white shark, catshark, medaka, reedfish, gar, frog, coelacanth, green anole, platypus, and 
elephant) along with the six study species (lamprey, zebrafish, goldfish, chicken, mouse, and human) were used to infer 
OGs. OGs were defined by setting the ascidian node as a base node, and then hierarchical orthogroups (HOGs) were defined 
with a jawless-jawed vertebrate divergence node as a base node. For this purpose, protein sequences were obtained from 
the NCBI RefSeq or Ensembl databases, except for the lamprey and goldfish. For the latter species, the transcript sequences 
were retrieved from the genome with the transcript annotation using gffread (version 0.12.7), discarding multi-exon mRNAs 
that had any intron with a non-canonical splice-site consensus (i.e., not GT-AG, GC-AG, or AT-AC). Next, the sense strand 
of the gene transcripts was utilized to predict coding sequences via TransDecoder (version 5.5). This process employed the 
TransDecoder.LongOrfs function with the "-S" option. The longest sequence of predicted amino acids was selected for each 
gene and employed for orthology inference. The updated transcript assembly of the lamprey was employed, as described in 
the preceding section. Orthology inference was conducted using Orthofinder (version 2.5.5.2) with the following 
parameters: -M msa -S blast -A mafft -T fasttree. The species tree was subsequently corrected manually using the -s option. 
In lieu of the default FastTree tree inference program, IQtree2 (version 2.3.2) was employed for the generation of all trees. 
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The resultant phylogenetic trees were subjected to a duplication-loss-coalescence analysis with the rooted gene trees to 
resolve speciation and gene duplication events. Finally, HOGs were identified by setting the jawless-jawed vertebrate 
divergence node as the root node. The nomenclature of genes in lamprey and goldfish was updated based on the information 
provided by HOGs. For example, two genes, "NTNG1-NTNG2-1" and "NTNG1-NTNG2-2", in lamprey are paralogs, and 
both are orthologs of the human genes NTNG1 and NTNG2. The accession numbers of gene annotations are provided in 
Supplementary Table 7. 
 
Sample collection and library preparation for single-cell sequencing 
Lamprey. The retinas of downstream-migrant lamprey were dissected and snap-frozen as described above. Frozen nuclei 
were extracted using the Chromium Nuclei Isolation Kit (10x Genomics) according to manufacturer's instructions. In brief, 
three retinas were dissociated in lysis buffer with a plastic pestle until a homogeneous solution was obtained. Residual tissue 
debris was removed with the Nuclei Isolation Column followed by centrifugation in Debris Removal Buffer. The 
supernatant was discarded, and the nuclei pellet was resuspended in Wash Buffer. The nuclei were pelleted by centrifugation 
and resuspended in 50 μl of Resuspension Buffer. A sample of nuclei was stained with propidium iodide and quantified 
using a hemocytometer. The remaining resuspended nuclei (~18,000 nuclei per library) were utilized for transposition and 
loaded into the 10x Genomics Chromium Single Cell system. From a single nuclei suspension, two replicates of the 
multiome library were constructed using the Chromium Next GEM Single Cell Multiome Reagent Kit version 1 (10x 
Genomics), according to manufacturer’s instructions. The libraries were then subjected to sequencing on the Illumina 
NovaSeq platform. 

 
Chicken. Newly hatched chicks were killed by carbon dioxide inhalation followed by manual cervical dislocation. Retinas 
were removed from the eye by dissection, transferred to calcium and magnesium-free Hank’s balanced salt solution (Thermo 
Fisher Scientific), and dissociated into single cells by papain digestion11. A single chick retina was incubated in 800 μl of 
HBSS with 1.3 mg of papain (Worthington Biochemical Corporation) at 37°C for 10 min. The retina was then dissociated 
by gentle trituration with a pipette. The dissociated cells were washed with Dulbecco’s Modified Eagle Media (DMEM; 
Thermo Fisher Scientific) containing 10% fetal bovine serum (Thermo Fisher Scientific) and DNaseI (Roche) for 5 min at 
37°C. The cells were then pelleted by centrifugation at 1000 × g for one minute. The cells were resuspended in Dulbecco’s 
phosphate-buffered saline (DPBS) with 1% BSA and filtered. To isolate nuclei, dissociated cells were subjected to 
centrifugation at 300 × g for 5 min at 4°C. The cell pellet was then resuspended in 100 µl of lysis buffer [0.1% IGEPAL 
CA-630, 0.1% Tween-20, and 0.01% digitonin in lysis dilution buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 1% 
BSA, pH 7.4)], mixed three times by pipetting, and incubated on ice for 3 min. The nuclei were then added to 1 ml of wash 
buffer (0.1% Tween-20 in the lysis dilution buffer) and centrifuged at 500 × g for 5 min at 4°C. Finally, the nuclei pellet 
was resuspended in 50 µL of 1x Diluted Nuclei Buffer (10x Genomics) and filtered through a 40 µm Flowmi™ Cell Strainer. 
The nuclei were quantified using a hemocytometer. ~22,000 nuclei were then resuspended and used for transposition and 
subsequently loaded into the 10x Genomics Chromium Single Cell system. The scATAC-seq library was constructed using 
the Chromium Single Cell ATAC Reagent Kits v1.1 (10x Genomics), according to manufacturer’s instructions. The libraries 
were subjected to sequencing on the Illumina NovaSeq platform. 
 
Sequencing data preprocessing 
Publicly available data were retrieved from previous studies, including snATAC-seq datasets for goldfish46 and mouse47 as 
well as multiome (snRNA-seq + snATAC-seq) datasets for zebrafish48 and human49. The processed sequencing data was 
retrieved from the original study in zebrafish, while for the other five species, the raw sequence data were initially processed 
by the Cell Ranger ATAC version 2.0.0 pipeline or the Cell Ranger ARC version 2.0.0 pipeline (10x Genomics) for read 
filtering, alignment against the genome, and barcode counting. The genome assemblies used were kPetMar1 (lamprey), 
GCA_014332655.1 (goldfish), galGal6 (chicken), mm10 (mouse), and hg38 (human). The processed data were loaded into 
ArchR50 (version 1.0.2) for goldfish, chicken, and mouse, while the lamprey and human multiome data were loaded into 
Seurat51,52 (version 4.0.3) and Signac53 (version 1.3.0). Transcriptome annotations used in this study are as follows: lamprey, 
custom annotation as described in the previous section; goldfish, the previously described custom annotation46; chicken, 
NCBI Gallus gallus Annotation Release 104; mouse, mm10-2020-A-2.0.0 provided by 10x Genomics; and human, 
GRCh38-2020-A-2.0.0 provided by 10x Genomics. 
 
snATAC-seq analysis 
Lamprey. Multiome (snRNA-seq + snATAC-seq) sequence reads from upstream-migrant lamprey retina were used as input 
data for analysis by Seurat and Signac, respectively. Low-quality cells were removed if the cell contained <300 expressed 
genes; if >0.3% of the cell’s total gene expression derived from mitochondrial genes; if <1,000 fragments were detected; or 
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if the cell had a transcription start site enrichment score <3. Putative doublets were removed based on the presence of 
>40,000 fragments or >10,000 expressed genes.  

For gene expression analysis, the negative binomial regression normalization method implemented in SCTransform 
(Seurat) was used to standardize the gene expression matrix and reduce gene expression noise. Dimensionality reduction of 
gene expression was then conducted with RunPCA. The significance of each principle component in the RNA analysis was 
evaluated manually using elbow plots. 1 to 30 dimensions were chosen for the subsequent analysis. 

A cell-by-region count matrix of ATAC-seq reads overlapping open chromatin regions defined by Cell Ranger 
ATAC was generated using FeatureMatrix and CreateChromatinAssay (Signac). The count matrix was subjected to 
normalization and dimensionality reduction using FindTopFeatures (Signac) with a min.cutoff of ‘q0’, RunTFIDF (Signac), 
and RunSVD (Signac) with default settings. The correlation between total counts and each dimension in the ATAC analysis 
was visualized with DepthCor (Signac), and the first Latent Semantic Indexing (LSI) component, which captured 
sequencing depth (technical variation), was filtered.  

The nearest neighbors for each cell were identified based on a weighted combination of two modalities (RNA and 
ATAC) by constructing a weighted nearest neighbor (WNN) graph using FindMultiModalNeighbors with 1 to 30 
dimensions (PCA) and 2 to 30 dimensions (LSI). The clusters were determined by modularity optimization using 
FindClusters with a resolution of 0.2.  

Cell clusters were assigned to retinal cell classes based on the expression of the following cell-class marker genes9: 
RHO and GNAT2 (photoreceptor), SLC17A6_1, SLC17A6_2, GRIK2_1, GRIK2_2, and PRKCA (bipolar cell), ONECUT1 
(horizontal cell), SLC6A9, SLC6A11_1, SLC6A11_2, and SLC32A1 (amacrine cell), and RBPMS (ganglion cell). The Müller 
glia cluster was manually annotated using CellSelector (Seurat) based on the expression of GLUL.  

Two technical replicates were independently analyzed. Following cell annotation in each of the two technical 
replicates, the data were merged into a single dataset. Gene expression data were then normalized, scaled, and subjected to 
PCA analysis as described above. The clusters were identified by constructing a k-nearest neighbor graph with 
FindNeighbors (Seurat) with 1 to 40 dimensions (PCA), followed by modularity optimization using FindClusters (Seurat) 
with a resolution of 1.5. The cell embedding was obtained with RunUMAP (Seurat). The cell annotations were transferred 
from the multimodal clustering analysis conducted in each sample. Finally, putative mixed clusters (i.e., those assigned 
annotations for more than one cell class) were removed from the analysis.  

 
Zebrafish. Multiome (snRNA-seq + snATAC-seq) sequence reads from adult zebrafish retina were retrieved from a 
repository (see original study48) and used as input data for analysis by Seurat and Signac, respectively. Low-quality cells 
were removed if > 5% of the cell’s total gene expression derived from mitochondrial genes; if < 1,000 fragments were 
detected; or if the cell had a transcription start site enrichment score <2. Putative doublets were removed based on the 
presence of >6,000 fragments or > 4,000 expressed genes. Cell annotations presented in the original study48 were used. 
 
Goldfish. Barcoded and aligned fragments were used as input data for ATAC analysis by ArchR. A genome-wide tile matrix 
with insertion counts was calculated on 500-bp non-overlapping windows using createArrowFiles. Low-quality cells were 
removed if they had a transcription start site enrichment score <15 or <1,000 fragments. Putative doublets were removed 
using filterDoublets with a filterRatio of 2. Nuclei with >50,000 fragments were also excluded. 

Dimensionality reduction was implemented with addIterativeLSI using the LSI method. Cell clustering was then 
performed with addClusters using a shared nearest neighbor (SNN) modularity optimization-based clustering algorithm. A 
total of eight clusters were identified, comprising rod photoreceptors, cone photoreceptors, bipolar cells, horizontal cells, 
amacrine cells/ganglion cells, Müller glial cells, microglia, and oligodendrocytes. Cluster annotation was performed based 
on marker genes identified in the original study46. To distinguish between amacrine and ganglion cells, cell annotations 
from scRNA-seq data were projected onto cells in the snATAC-seq dataset. First, 501-bp open chromatin regions were 
generated with addReproduciblePeakSet, utilizing the pseudo-bulk ATAC replicates for each cluster. Next, peak sets from 
each cell class were merged to create a non-redundant union set, which was then subjected to analysis in Signac for 
normalization and dimensionality reduction, as described above for lamprey. Clusters were identified using FindClusters 
with a resolution of 2.0. The processed data were then integrated with the scRNA-seq data, where the gene expression 
profile was processed using a standard protocol in Seurat and the cell clusters were annotated according to the expression 
of marker genes identified in the original study46. Cell annotations for the scRNA-seq data were then projected onto the 
cells of the snATAC-seq dataset using FindTransferAnchors with the cca reduction method, followed by TransferData with 
the LSI weight reduction method, using 2 to 30 dimensions. Transferred labels were retained based on the most abundant 
cells within each cluster. Only the five classes of retinal neurons and Müller glia were retained for subsequent analysis. 
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Chicken. Barcoded and aligned fragments were used as input data for ATAC analysis by ArchR. Low-quality nuclei were 
removed if they had a transcription start site enrichment score <15 or <3,000 fragments. Putative doublets were removed 
using the filterDoublets function with a filterRatio of 3. Nuclei with >25,000 fragments were also excluded. 

Dimensionality reduction was implemented by the LSI method using addIterativeLSI with two iterations and cluster 
parameters of resolution of 0.1. Cell clustering was then performed using a shared nearest neighbor (SNN) modularity 
optimization-based clustering algorithm, employing addClusters with a resolution of 0.4. Retinal cell classes were identified 
by enrichment of the following marker genes54: GNAT2 and RHO (photoreceptors), VSX1 and VSX2 (bipolar cells), 
ONECUT3 (horizontal cells), SLC32A1 (amacrine cells), RLBP1 (Müller glia), and OLIG2 (oligodendrocytes). To verify 
that ganglion cells were absent from our dataset, we projected cell annotations for published scRNA-seq data54 onto the 
cells in the snATAC-seq data, as described above for goldfish. We failed to detect any ganglion cell clusters. Only the four 
other classes of retinal neurons and Müller glia were retained for subsequent analysis. 

 
Mouse. Barcoded and aligned fragments from multiple developmental stages (E11, E12, E14, E16, E18, P0, P5, P8, P11, 
and P14) were pooled and used as input data for analysis by ArchR. Low-quality cells were removed if they had a 
transcription start site enrichment score <10. Putative doublets were removed using the filterDoublets function with a 
filterRatio of 2. Nuclei with >30,000 fragments were also excluded. 

Dimensionality reduction and cell clustering was performed using addClusters with a resolution of 0.7. A total of 
fourteen clusters were identified, comprising rod photoreceptors, cone photoreceptors, bipolar cells, horizontal 
cells/amacrine cells, ganglion cells, Müller glial cells, early cone photoreceptors, early rod photoreceptors, early neurogenic 
cells, late neurogenic cells, early retinal progenitor cells, and three stages of retinal progenitor cell. Cluster annotation was 
performed based on marker genes identified in the original study47. To distinguish between horizontal cells and amacrine 
cells, we projected cell annotations for developmental-stage-matched scRNA-seq data55 onto the cells in the snATAC-seq 
data, as described above for goldfish, except for using FindClusters with a resolution of 0.4. Only mature retinal neurons 
and Müller glia were retained for subsequent analysis. 
 
Human. Multiome (snRNA-seq + snATAC-seq) data were processed in a manner analogous to that described in the original 
study49. In brief, for each sample, count matrices for both RNA-seq and ATAC-seq were loaded into ArchR. Low-quality 
cells were removed if they had <200 RNA transcripts, >0.8% mitochondrial gene transcripts, <3,000 ATAC fragments, or 
a transcription start site enrichment score <7. Putative doublets were removed using the filterDoublets function with a filter 
ratio of 5. Additional doublets we removed if cells expressed >25,000 RNA transcripts, >7,000 genes, or >70,000 ATAC 
fragments. The remaining nuclei in all preprocessed samples were subsequently merged into a single Seurat object. Gene 
expression counts were normalized using NormalizeData, scaled using ScaleData, and batch-corrected using Harmony56. 
Graph-based clustering was then performed on the Harmony-corrected data using the top 20 principal components at a 
resolution of 0.5. Cluster annotation was performed based on marker genes identified in the original study49. Clusters co-
expressing marker genes from different cell classes were excluded; clusters devoid of any marker genes were also excluded. 
Only the five classes of retinal neurons and Müller glia were retained for subsequent analysis. 
 
scRNA-seq analysis 
Single-cell RNA-seq data for lamprey, zebrafish, and human derive from multiome datasets described in the preceding 
section. For mouse, scRNA-seq data and corresponding cell cluster annotations were retrieved from a single-cell expression 
atlas of adult retina57. For goldfish, the raw sequence data were obtained from a published study46 and processed using Cell 
Ranger (version 7.1.0; 10x Genomics) for read filtering, alignment against the genome, and barcode counting. Goldfish 
retinal cell-class annotations were also retrieved from the paper46, and cells that were both retained in our analysis and 
included in their original cell annotations, were used for subsequent analysis. For chicken, single-cell RNA sequencing data 
was generated in the present study from newly hatched (P0) chicken retinas. The raw sequence data was processed using 
Cell Ranger (version 7.0.0), and the aligned gene expression reads were loaded into Seurat. Low-quality cells were removed 
if the cell contained <1,000 expressed genes or if >10% of the cell’s total gene expression derived from mitochondrial genes. 
Putative doublets were removed based on the presence of >15,000 expressed genes. Count data were normalized using 
SCTransform (Seurat), and dimensionality reduction was performed using RunPCA (Seurat). The significance of each 
principle component in the RNA analysis was evaluated manually using elbow plots. 1 to 40 dimensions (PCA) were used 
for identifying the clusters with FindNeighbors, followed by modularity optimization with FindClusters using a resolution 
of 1.2. Retinal cell classes were identified based on the expression of cell-class marker genes54. Raw data acquisition and 
processing will be presented in a forthcoming publication. 
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Cell-class meta-gene analysis 
To devise a metric for measuring evolutionarily conserved cell-class meta-gene activity, differentially expressed genes were 
first identified using the Wilcoxon rank sum test. Single-cell RNA-seq datasets from the six study species (described above) 
were analyzed using FindAllMarkers (Seurat) with the following parameters: logic.threshold = 0, min.pct = 0.05, 
return.thresh = 1. Differentially expressed genes were defined as those which exhibited an average log2-fold change > 0.1, 
an adjusted p-value < 0.01, and a percentage of cells expressing the gene >10%. Differentially expressed genes were further 
filtered for cell-class-enriched expression as follows. Pseudo-bulk gene expression was quantified for each cell class using 
AverageExpression (Seurat), and then tau (τ), a measure of cell-class specificity of gene expression, was calculated58. Tau 

(τ) =  ∑ (#$%!)"
!#$
'$#

, where N is the number of cell classes, and xi is the expression profile component normalized by the maximal 
expression value. Genes with τ > 0.6 were retained for subsequent analysis.  

The top 1,000 genes with the highest tau index were identified for each cell class in each species and then intersected 
across the six study species to identify evolutionarily conserved differentially expressed genes. To accomplish this task, 
hierarchical orthogroups (HOGs) were defined using Orthofinder described above in Gene orthology inference. HOGs 
that contained differentially expressed genes from lamprey and three or more jawed species were retained, and for each 
species, the cell-class-enriched genes included in the HOGs were defined as evolutionarily conserved differentially 
expressed (ecDE) genes.  Next, chromatin openness over the promoter and gene body of ecDE genes was quantified using 
GeneActivity (Signac). Individual gene activity scores were aggregated into a single activity score, referred to as ‘cell-class 
meta-gene activity’. Meta-gene activity was quantified in individual cells for each cell class, and the gene accessibilities of 
both the meta-genes and the remaining genes were normalized and scaled in accordance with the standard protocol in Signac. 
The statistical significance of cell-class enrichment of the meta-genes was determined by comparing the cell class exhibiting 
the highest score for the meta-gene with the second-highest scoring cell class using the Wilcoxon rank sum test followed 
by Bonferroni correction, performed using Wilcox.exact in the exactRankTests package in R.  

 
Identifying differentially accessible open chromatin regions 
Two replicates of pseudo-bulk ATAC data were generated from subsets of snATAC-seq data for each retinal cell class using 
addGroupCoverages (ArchR). 201-bp consensus open chromatin regions (peaks) were generated using 
addReproduciblePeakSet for the replicates for each cell class with the following parameters: extendSummits = 100 and 
cutOff = 0.1. The peak sets from each cell class were then combined, and the resultant non-redundant union peak set was 
used for the following analysis. Single-cell differential accessibility tests were performed using FindAllMarkers (Seurat) 
with the following parameters: logfc.threshold = 0, only.pos = TRUE, min.pct = 0.01, test.use = LR, latent.vars = 
nCount_ATAC, return.thresh = 0.01, slot = counts. Peaks with an adjusted p-value <0.01 and an average log2-fold change 
>0 were retained. Additionally, peaks were retained if their average accessibility in pseudo-bulk ATAC-seq data—
calculated with AverageExpression (Seurat)—was four times greater than the average of the average accessibilities from 
the other cell classes. Furthermore, cell-class-enriched peaks were filtered if they did not overlap with peaks called in the 
corresponding cell type. The resultant peak sets were defined as differentially accessible peaks. Broadly open peaks were 
defined as all peaks not contained in the union of differentially accessible peaks for each species. Chromatin accessibility 
of cell-class-enriched open chromatin regions was visualized using deepTools59 (version 3.5.4). The number of OCRs used 
for the following analysis is provided in Supplementary Table 6.  

 
Determining cross-species alignability of cell-class-enriched OCRs 
The union of all differentially accessible OCRs for each of five study species (lamprey, zebrafish, chicken, mouse, and 
human) was mapped onto the reference genomes of various vertebrate species. Regions that overlapped with exons were 
excluded prior to mapping. The UCSC Genome Browser’s LiftOver utility60 (version 377 in bioconda) was employed for 
mapping, utilizing a parameter minMatch=0.5. For this analysis, precomputed reciprocal best-hit whole-genome alignment 
(rbest.chain) files were downloaded from the UCSC Genome Browser website. Differentially accessible OCRs in zebrafish 
were mapped from danRer11 onto danRer7 and then mapped onto the reference genomes of other species, utilizing the 
publicly available reciprocal best chain files. Mapping between conspecific reference genomes was conducted using the 
LiftOver utility with a parameter minMatch=0.95 and the “over.chain” file. Similarly, lamprey OCRs were mapped from 
kPetMar1 onto petMar3 with the custom chain file generated using flo61, a UCSC Genome Browser command line wrapper. 
The evolutionary divergence times of all internal branches were obtained from timetree62. 

The decay of sequence mappability (i.e., alignability) was modeled using a fitted Gompertz equation	𝑓(𝑥) =
100𝑒(

%
&)(#$()*(+%)), with divergence time as a variable. Equation fitting was performed using the Gauss-Newton algorithm 

with starting estimates (a = 0.001, b = 0.01) and a maximum of 1,000 iterations allowed in the nls function in the stats 
package (R; version 4.1.0). The resultant fitted parameter values were a = 0.002508772 and b = 0.006060751. The 
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confidence intervals were determined by 10,000 bootstrap samples using the boot_nls function in nlraa (version 0.89, 
https://github.com/femiguez/nlraa).  
 
Discovery of evolutionarily conserved motifs 
De novo motif discovery. De novo motifs (position probability matrices) were identified for each species using 
findMotifsGenome.pl (HOMER v4.11)21, with parameter -size 201. Cell-class-enriched OCRs were used as target sequences, 
and the broadly open regions were used as background sequences for each species. Identified motifs were retained for 
subsequent analysis if the statistical significance of the motif was <10-10 and if the motif was present in >2% of the cell-
class-enriched OCRs. 

 
Motif Clustering. The motif clustering approach was adapted from a prior study63. For each cell class, de novo motifs of all 
study species were subjected to pairwise comparison using Tomtom (MEME Suite; version 5.4.1)64, with the following 
parameters: -dist kullback, -motif-pseudo 0.1, -min-overlap 1. The pairwise comparison similarity values (E-values) were 
calculated by multiplying each Tomtom-reported p-value by the number of target motifs, and a group of -log10(E-values) for 
each motif was then employed to measure the Pearson correlation coefficient between two motifs. E-values that exceeded 
100 were capped at a maximum value of 100. Hierarchical clustering was performed using the average linkage comparison 
method with one minus the Pearson correlation coefficient as the distance metric. hclust in the stats package (R; version 
4.1.0) was used for clustering. Motif clusters were identified by cutting the resultant dendrogram at a height of 0.9. To 
eliminate clusters with dissimilar motifs, the median value of the Pearson correlation coefficient among the most 
significantly enriched motifs from each species within a cluster was calculated, and those clusters with median values ≤0.5 
were removed. Motif clusters were defined as ‘evolutionarily conserved’ if they included motifs from lamprey and three or 
more jawed species. Given the absence of chicken ganglion cells in our dataset, evolutionary conserved motif clusters in 
ganglion cells were only required to contain motifs from lamprey and two or more jawed species.  

To create consensus ‘merged’ motifs, the most significantly enriched motifs from each species in each retained 
cluster were subjected to sequence alignment, and for each position, the mean value of the position probability matrix was 
calculated using mergeMotifs (motifStack65, version 1.38.0). Undefined flanking regions for each motif were assigned a 
probability of zero and included in the mean calculation. The merged motifs were converted from a position probability 
matrix to an information content matrix, and then the motif flanking region was trimmed from either side if its information 
content was <0.05. The resultant merged motifs were then compared with mammalian TF binding motifs in the 
HOCOMOCO database23 using Tomtom22.  
 
Analysis of cis-regulatory grammar  
Motif scanning. To identify occurrences of motifs, OCRs were scanned for motifs using scan_sequences (universalmotif; 
version 1.16.0; https://github.com/bjmt/universalmotif), retaining the highest-scoring motif if two motifs overlapped. The 
cutoff thresholds for calling motifs were calculated as the median of thresholds identified by HOMER across species. The 
background nucleotide frequencies were set to those observed in the corresponding cell-class-enriched 201-bp OCRs for 
each of the six species.  

 
Motif distribution and affinity. To graph motif distributions and affinities within OCRs, the median PWM score and motif 
density per nucleotide were calculated. The per-nucleotide values were further smoothed using a 101-bp sliding window 
centered on the nucleotide in question. 

 
Motif co-occurrence. For each pair of motifs, the number of OCRs with at least one pair was counted. Co-occurrences 
involving two overlapping motifs, regardless of the strand, were excluded. The enrichment of co-occurrence was then 
calculated as the ratio of the frequency of motif pairs in cell-class-enriched OCRs to the frequency of motif pairs in 
background OCRs. 50,000 background sequences were semi-randomly selected from the set of broadly open regions using 
homer2 bg (HOMER; version 5.1) with parameters: -ikmer 2 -N 50000 -NN 100000000. In this way, the distribution of 
dinucleotide frequencies in background sequences was matched to that in the target cell-class-enriched OCRs.  
 
Motif spacing. To identify preferential spacing between motifs, the distance between the primary and secondary motifs in 
cell-class-enriched OCRs was quantified. Two relative distances to the primary motif were measured: the distance between 
the 5’ nucleotide of the primary motif and the 3’ nucleotide of the secondary motif, and the distance between the 3’ 
nucleotide of the primary motif and the 5’ nucleotide of the secondary motif. The distance between the two motifs was 
determined by selecting the value closest to zero. If the secondary motif was found to be 3' downstream of the primary 
sequence, the length of the primary motif was added to this distance, ensuring that the distance was always measured from 
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the 5' nucleotide of the primary motif. The number of instances of the secondary motif at all nucleotide positions on both 
strands between ±40 bp relative to the primary motif was tallied. 
 
Nominating cognate transcription factors for evolutionarily conserved motifs  
To identify cognate TFs that might bind evolutionarily conserved motifs, merged motifs were compared with mammalian 
TF binding motifs in the HOCOMOCO database23 using Tomtom. To nominate cognate TFs across the six study species, 
we assumed that homologous TFs belonging to the same hierarchical orthologous group (HOG; see Gene orthology 
inference) exhibit similar binding preferences. Zinc finger proteins belonging to the largest orthogroup were excluded from 
this analysis on account of the extensive divergence of binding preferences among zinc finger proteins, which is well-
attested66. 

Next, single-cell RNA-seq data were employed to identify TFs exhibiting cell-class-enriched expression in each of 
the six study species. Differential expression was determined using the Wilcoxon rank sum test in FindAllMarkers (Seurat). 
Pseudo-bulk expression profiles of TF genes in each cell class of each species were quantified using AverageExpression 
(Seurat) to assess the degree of cell-class enrichment for each TF. Candidate cognate TFs were retained if the corresponding 
motif similarity value (q-value in the Tomtom output) was <10-1 and the significance of the cell-class enrichment (adjusted 
p-value in the output of the differential expression test) was <10-1.5.  

 
Training and comparison of gkm-SVM models 
Model training and validation. 201-bp OCRs identified from snATAC-seq data in the six study species were used for 
training gkm-SVM models31. Differentially accessible OCRs in each of the six retinal cell classes were utilized as the 
positive training set, and broadly open OCRs from the same species were used as the negative training set. For each species, 
the same number of positive and negative OCRs were used for training and testing. The datasets were randomly divided 
into five equal groups, ensuring that each group was non-overlapping, and a 5-fold cross-validation was performed. Models 
were trained using LS-GKM 67 (version 0.1.0) with the following parameters: a linear gkm kernel without center weight 
(kernel 2), L=11, K=7, C=1. 

Trained models were utilized to score all test sets within each cell class of each species. ROC-AUC scores were 
calculated based on the scores of the corresponding positive and negative test sets using ROCR68  (version 1.0-11). The 
overall performance of the models was determined by measuring the mean and standard deviation of ROC-AUC scores 
from the five independent replicates of the 5-fold cross-validation models. 
 
Model interpretation. The contribution score of each nucleotide in the OCRs to the classification was computed using 
gkmexplain32 (release version 1.0.0). The importance scores for the mouse Gnb3 promoter were calculated for photoreceptor 
and bipolar cell models of all study species except mouse. Both importance and hypothetical importance scores were 
calculated using the gkmexplain command, and the importance scores were normalized to the hypothetical importance score 
per developer's recommendation. The resultant normalized importance scores were averaged among five model replicates 
obtained by 5-fold cross-validation (described above). 
 
Model clustering. All possible 11-mer sequences were scored with the gkm-SVM models using the gkmpredict command. 
The resultant scores were averaged among five model replicates obtained by 5-fold cross-validation for each cell class of 
each species. The 200 highest-scoring 11-mers were selected for each model and merged to create a union of the best-
scoring 11-mers (4,276 11-mers in total). Agglomerative hierarchical clustering was performed using one minus the Pearson 
correlation coefficient as a distance metric and Ward's minimum variance method, employing hclust in the stats package 
(R; version 4.1.0). The statistical significance of a branching node was calculated using the pvclust package (version 2.2-0, 
https://github.com/shimo-lab/pvclust), where the approximately unbiased p-value for selective inference (SI p-value) was 
calculated by bootstrap resampling analysis followed by a multiscale resampling implemented in pvclust. The tree was 
visualized using the ggtree package (version 3.10.1). The silhouette score of each gkm-SVM model was measured using 
silhouette in the cluster package (version 2.1.2). The resulting scores were averaged across models within a cluster and 
subsequently averaged across clusters to evaluate cluster robustness. 
 
Code and data availability 
All raw single-cell sequencing data and processed data generated in this study are available through the Gene Expression 
Omnibus (accession number pending). Cell metadata for scRNA-seq and snATAC-seq, hierarchical orthogroups, genomic 
coordinates of open chromatin regions, evolutionarily conserved motif PWMs, and gkm-SVM models are available in 
FigShare (accession number pending). The code used for the analysis is available upon request. 
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Fig. 1 | Single-nucleus chromatin accessibility profiles for six retinal cell classes in six vertebrate species. a, A 
phylogenetic tree of the vertebrate species utilized in this study. Divergence times are estimated based on a published 
database62. b, (left) H&E-stained sections of lamprey and human retina. (right) Schematic of the six major retinal cell classes 
in vertebrates. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. c, Single-cell ATAC-seq 
profiles of the six indicated species. Retinal cell classes were identified by clustering analysis and visualized in two-
dimensional space using the Uniform Manifold Approximation and Projection (UMAP) method. Cell classes are color-
coded as in b. d, Violin plots showing the average chromatin accessibility of cell class-enriched meta-genes generated from 
sets of evolutionarily conserved marker genes for each cell class in each species (see Methods). The rows are grouped by 
species for each snATAC-seq data set, and the columns are grouped by cell class. Cell-class meta-gene enrichment was 
determined by comparing the cell class exhibiting the highest score for the meta-gene with the second-highest scoring cell 
class. An asterisk indicates an adjusted p-value <0.05 (Wilcoxon rank sum test followed by Bonferroni correction).  
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Fig. 2 | Nearly complete sequence turnover of retinal cell class-enriched open chromatin regions after 400 million 
years of evolution. Retinal cell class-enriched chromatin regions in five query species (human, mouse, chicken, zebrafish, 
and lamprey) were mapped onto the genomes of diverse vertebrate species (also see Supplementary Table 1). The X-axis 
represents the evolutionary divergence times between query and target species according to a published database62. The Y-
axis indicates the percent of query sequences that can be aligned to the target genome. The decay of sequence alignability 
over evolutionary time was modeled with the Gompertz equation using divergence time as a variable. The 95% confidence 
intervals measured by bootstrap resampling (see Methods) are shown as blue shading. The query species, when used as 
targets, are labeled and highlighted in red. 
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Fig. 3 | Multiple cis-regulatory motifs for each retinal cell class are conserved between jawed and jawless species. a, 
Schematic showing the methodology used for the identification of cell class-enriched open chromatin regions, the discovery 
of sequence motifs, and motif clustering. b, Heatmaps showing motif-similarity correlation values for all pairs of 
significantly enriched de novo motifs from six species. The motif-pair values were hierarchically clustered to reveal families 
of related motifs (see Methods). Evolutionarily conserved motif families—as defined in the main text—are enclosed by 
green boxes and indicated by numbered black bars at the bottom of each heatmap. The species of origin for each motif is 
indicated by color-coding across the top and left sides of each heatmap. ‘Motif enrichment’ is the normalized statistical 
significance of motif enrichment in each species (i.e., the most enriched motif in each species has a motif enrichment = 1). 
c, Representative examples of two evolutionarily conserved motifs (EC motifs) in bipolar cells. The sequence logo for the 
most significantly enriched motif in each species is shown, along with the logos for a ‘merged’ motif representing the 
average of the six species motifs. For the full set of EC motifs, see Supplementary Fig. 3. d, The median of the normalized 
statistical significance of motif enrichment for each of the 16 de novo motifs is shown (see Methods). The normalized motif 
enrichment value for each of the individual species is also presented. The sequence logos at the bottom represent the merged 
motifs.  
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Fig. 4 | Evolutionary conservation of retinal cis-regulatory motif vocabulary distributions. a, Schematic representation 
of the major features of cis-regulatory grammar. b, The spatial distribution and normalized position weight matrix (PWM) 
scores of the EC motifs within class-enriched open chromatin regions in the six species are presented. The motifs are ordered 
from left to right according to motif enrichment as shown in Fig. 3d. The sequence logos for each EC motif and the closest 
known motif in the HOCOMOCO database23 are displayed on the left. Analysis of motif syntax is presented in 
Supplementary Figs. 4 and 5. PH, photoreceptor cell; BC, bipolar cell; HC, horizontal cell; AC, amacrine cell; GC, 
ganglion cell; MG, Müller glia; ND, not determined. 
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Fig. 5 | Retinal cell class-specific cis-regulatory grammars are conserved between jawed and jawless species. a, 
Schematic showing methodology used to generate and compare gkm-SVM models of cis-regulatory grammar. b, Heatmap 
showing Pearson correlation coefficients between gkm-SVM models. Models for a given cell class are enclosed by black 
boxes. (c) Hierarchical clustering of the gkm-SVM models. Branch nodes with a statistical significance of p < 0.01 are 
denoted by an asterisk (approximately unbiased p-value for selective inference by bootstrap resampling analysis followed 
by a multiscale resampling). L, lamprey; Z , zebrafish; G, goldfish; C, chicken; M, mouse; and H, human. 
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Supplementary Figures 
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Supplementary Fig. 1 | Single-cell expression profiles of retinal cell classes in six species. Retinal cell classes were 
identified through clustering analysis and visualized using the UMAP method. The heatmap illustrates the expression of 
selected cell class-enriched marker genes that are conserved across species. Highest-scoring marker genes are shown for 
each cell class in each species. Gene names in lamprey and goldfish were updated based on the information provided by 
hierarchical orthogroups (See Methods). 
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Supplementary Fig. 2 | Chromatin accessibility in cell class-enriched and broadly open regions. Columns show 
pseudo-bulk snATAC-seq profiles for each species, grouped vertically according to cell class or broadly open regions. The 
color gradient reflects chromatin accessibility from high accessibility (yellow) to low accessibility (dark blue). PH, 
photoreceptor cells; BC, bipolar cells; HC, horizontal cells; AC, amacrine cells; GC, ganglion cells; MG, Müller glia. 
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Supplementary Fig. 3 | Evolutionarily conserved cis-regulatory motifs. The sequence logo for the most significantly 
enriched motif in each species is shown, along with the logos for a ‘merged’ motif representing the average of the six species 
motifs and the closest known motif in the HOCOMOCO database23. The motifs for each cell class are ordered as in Fig. 3d. 
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Supplementary Fig. 4 | Evolutionarily conserved motif co-occurrence in cell class-enriched open chromatin regions. 
The graphs illustrate the enrichment of co-occurrence of the indicated motif pairs in cell class-enriched open chromatin 
regions relative to broadly open regions. The median enrichment across all six species is indicated by the bar, and the values 
for individual species by symbols. 
 
 
 
 
 
 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.13.623372doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.13.623372


 
Supplementary Fig. 5 | Patterns of spacing and orientation between pairs of evolutionarily conserved motifs. a, Each 
panel shows the strand-specific per nucleotide density of the indicated secondary motif upstream and downstream of the 
primary motif (located between vertical dotted lines) in the indicated cell class-enriched open chromatin regions. Secondary 
motifs on the positive strand are shown in blue above the midline. Secondary motifs on the negative strand are shown in 
green, below the midline. ND, not determined. b, Motif spacing patterns between homotypic pairs of monomeric K50 
homeodomain-type motifs (i.e., BC_11) in photoreceptor- and bipolar cell-enriched open chromatin regions. Intermotif 
spacings of 8-11 bp (i.e., approximately one helical turn) are highlighted in gray. c, Motif spacing pattern between 
homotypic pairs of the HMG/SOX-type motif (i.e., MG_16) in Müller glia-enriched open chromatin regions. Intermotif 
spacings of 4-5 bp, which are characteristic of dimeric SOXE-type binding sites30, are highlighted in gray. 
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Supplementary Fig. 6 | Classificatory performance of gkm-SVM models. The performance of gkm-SVM models in 
classifying cell class-enriched open chromatin regions is shown. The average and standard deviation of ROC-AUC scores 
for five gkm-SVM model replicates are indicated within each box. L. lamprey; Z, zebrafish; G, goldfish; C, chicken; M, 
mouse; H, human.  
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Supplementary Fig. 7 | Predicted contribution of individual nucleotides in the mouse Gnb3 promoter to the overall 
gkm-SVM model score. a, Activity of wild-type and variant mouse Gnb3 promoter constructs from a previously published 
electroporation-based reporter assay performed in living mouse retina11. The promoter contains five bioinformatically 
predicted monomeric K50 homeodomain-type binding site motifs numbered 1-5. Inactivating mutations were introduced 
into each motif in each of the five ‘variant’ constructs.  In each case, the core of the motif ‘TAAT’ was changed to ‘TGGT’. 
+++, strong activity; ++, moderate activity; + weak activity; –, no activity; ×, mutated motif. b, The contribution of 
individual nucleotides to the overall score of the indicated gkm-SVM model is displayed as a sequence logo generated using 
GkmExplain32. The height of each nucleotide is proportional to its contribution to the overall score. ‘Merged’ indicates the 
averaged values across all five models (see Methods).  Mutated nucleotides in variant constructs #2 and #4 are indicated 
with arrowheads. 
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Supplementary Fig. 8 | Performance of hierarchical clustering of gkm-SVM models. Clustering performance was 
evaluated using the silhouette score, a measure of cluster cohesion, separation, stability, and robustness. The silhouette 
scores were averaged across the models within each cluster, and the resulting averages were subsequently averaged across 
clusters (see Methods). 
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Supplementary Tables 
 

Supplementary Table 1 | Cross-species sequence alignability of retinal cell class-enriched open chromatin regions. 
This table includes the data used to create Fig. 2. All column headers are presented in italics. Divergence_time, divergence 
time between query and target species in Mys, millions of years; Percentage_alignable, the percentage of query sequences 
alignable to the target genome assembly; Gompertz_prediction, the value of the fitted Gompertz equation at the indicated 
divergence time; Q2.5 and Q97, the boundary values of the 95% confidence interval as estimated for the fitted Gompertz 
equation at the indicated divergence time by bootstrap resampling (see Methods). 

 
Supplementary Table 2 | Gene expression profiles of evolutionarily conserved marker genes used to determine meta-
gene accessibility. This table includes the results of three analyses: the differential gene expression test performing using 
the Wilcoxon rank sum test on scRNA-seq data (Cell_class, Ave_log2FC, and p_val_adj); gene orthology inference (HOG); 
and the cell-class expression specificity index [tau (τ)]. See Methods for further details. 
 
Supplementary Table 3 | Enriched de novo motifs discovered by HOMER. All de novo motifs found by HOMER to be 
enriched in cell class-enriched open chromatin regions of all six species are present in six sheets, one for each cell class. 
ClusterID, the identifier of the cluster to which this motif belongs as determined by hierarchical clustering; Rank, the rank 
order of the statistical significance of enrichment of this motif among all motifs in this cell class and species; Sequence, 
sequence of de novo motif; PWM_threshold, the PWM log-odds score threshold for calling the motif; PosN, the number of 
motif hits in target open chromatin regions; PosT, the total number of target open chromatin regions; NegN, the number of 
motif hits in background control sequences (non-integer values are present in the NegN column because HOMER employs 
weights for each background control sequence to normalize sequence bias between target and background open chromatin 
regions); NegT, the total number of background control sequences; Enrichment, motif enrichment 
=(PosN/PosT)/(NegN/NegT); log10, the statistical significance of motif enrichment measured using a binominal distribution. 
The probability of either of two possible outcomes (i.e., presence or absence of the motif in a region) was defined by 
NegN/NegT (motif presence) and 1 – NegN/NegT (motif absence); Z-score, the z-score in the binomial distribution. 

 
Supplementary Table 4 | Assignment of evolutionarily conserved motifs to cognate transcription factors. EC_motif, 
evolutionarily conserved motif; TF_motif, identifier of the motif in the HOCOMOCO database that most closely resembles 
the EC motif; TF_family, the transcription factor family to which the TF that binds TF_motif belongs; Motif_similarity, the 
minimal false discovery rate at which the observed similarity would be deemed significant (i.e., the q-value in the Tomtom 
output); Cell_class, the cell class in which the gene is significantly enriched relative to other cell classes; p_val_adj, 
Bonferroni-corrected p-value determined by the differential gene expression test using the Wilcoxon rank sum test on 
scRNA-seq data; HOG, hierarchical ortholog group. 

 
Supplementary Table 5 | The number of cells of each retinal cell class in snATAC-seq datasets of the six species 

 
Supplementary Table 6 | The number of open chromatin regions used for de novo motif discovery and gkm-SVM 
model training 

 
Supplementary Table 7 | Accession numbers of sequences used for orthology inference 
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