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SUMMARY
Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on
genomic sequences often fail to explain why the same transcription factor can activate or repress transcrip-
tion in different contexts. To address this limitation, we developed an active learning approach to train
models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor
transcription factor cone-rod homeobox (CRX). After training the model on nearly all bound CRX sites from
the genome, we coupled synthetic biology with uncertainty sampling to generate additional rounds of infor-
mative training data. This allowed us to iteratively train models on data from multiple rounds of massively
parallel reporter assays. The ability of the resulting models to discriminate between CRX sites with identical
sequence but opposite functions establishes active learning as an effective strategy to train models of
regulatory DNA. A record of this paper’s transparent peer review process is included in the supplemental
information.
INTRODUCTION

The contribution of a transcription factor (TF) binding site to the

activity of a cis-regulatory element (CRE) depends on its local

sequence context, including the presence and absence of other

TF binding sites.1–6 Identical TF binding sites can occur in both

enhancers and silencers7–24 and in sequences with no activity

at all. As a consequence, standard enrichment analyses of TF

binding motifs have limited power to distinguish CREs with

opposite activities. Models that can explain why binding sites

for the same TF can activate, repress, or have no effect in

different contexts would address a major challenge in ongoing

efforts to understand the role of the non-coding genome in hu-

man health and disease.

Deep learning presents an opportunity to train better models

of CREs that accurately predict cis-regulatory activity from

DNA sequence and that identify critical features of local

sequence context. Deep neural networks trained on epigenomic

data to predict TF binding and chromatin accessibility from DNA

sequence often achieve high accuracy, and they identify impor-

tant sequence features underlying TF binding.25–32 However,

because TF binding per se is necessary but not sufficient for

CRE activity, models that predict TF binding cannot explain dif-

ferences in the activity of CREs bound by the same TFs. Models

trained on direct measurements of CRE activity from massively

parallel reporter assays (MPRAs)20,33–40 can discover sequence
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features driving differences in CRE activity. However, these

models are often less accurate than models trained to predict

TF binding, because CRE activity depends on higher-order inter-

actions between bound TFs and their associated co-factors. It is

these higher-order interactions that cause identical TF binding

sites to activate or repress in different sequence contexts.2,4–6,41

A major obstacle to learning higher-order interactions is the

limited amount of training data available in the genome. The

number of active CREs in the genome is small relative to the

scale of training data needed to learn the combinatorial interac-

tions among binding sites.42,43 As a consequence, current deep

learning models of cis-regulatory activity often fail to learn how

sequence context alters the effects of TF binding motifs, and

instead, they typically uncover those TF motifs with large,

consistent effects on gene expression. These tend to be the

same motifs identified by traditional motif-finding algorithms.

Additional training data beyond what is available in the

genome can be generated by MPRAs using synthetic DNA se-

quences. However, the number of possible synthetic sequences

vastly exceeds the number that can be feasibly synthesized and

assayed, and most synthetic sequences will be uninformative.

There is thus an urgent need for methods to prioritize informative

training examples from the space of potential training data,

thereby leveraging the capacities of MPRAs and other functional

genomics assays to generate large training datasets that are not

limited by what the genome alone provides.
ary 15, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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We address this gap by changing the current paradigm for

trainingmodels of CREs.We couple activemachine learning44–46

with synthetic biology to iteratively train models on successive

rounds of informative MPRA experiments. In contrast to current

approaches that rely on a single round of genomic training

data, active learning offers a way to iteratively improve models

by prioritizing new synthetic data based on their potential to

improve themodel. Active learning hasbeensuccessfully applied

to model metabolic networks,47 optimize cell culture media,48

perform in silico drug screens,49–52 identify TFs that drive cellular

differentiation,53 select optimal training data for nanopore base

calling,54 and to design pooled perturbation screens.55 Here,

we apply active learning to the problem of cis-regulation. We

use active learning to iteratively train models that learn to distin-

guish activating, repressing, and inactive TF binding sites in the

early post-natal mouse retina, a part of the developing central

nervous system that is amenable to electroporation-based,

episomal reporter assays.

RESULTS

Active learning applied to enhancers and silencers in
the developing retina
The retina-specific TF cone-rod homeobox (CRX) is a striking

example of how similar or even identical binding sites for a single

TF can have opposite effects in different CREs.56–62 CRX binds

enhancers and silencers,13,20,63 and its activating and repressing

functions are both required for terminal differentiation of photo-

receptors.10,64–74 The CRX motif is pervasive in photoreceptor

open chromatin,60,61 with over 50% of open chromatin regions

containing a match to the CRX binding motif. The CRX binding

site is thus by far the most enriched cell-type-specific TF binding

motif in the most abundant cell type of the mouse retina.60 Yet,

the mere presence of a CRX binding site is by itself insufficient

to predict whether a CRX-bound DNA sequence will activate or

repress transcription.13,16,20,61,63,75 When copies of CRX motifs

in CRX-bound sequences are abolished, cis-regulatory activity

can increase, decrease, or have no effect.13,16,20,61,75,76 Addi-

tionally, many CRX-bound sequences exhibit little to no cis-reg-

ulatory activity in the developing neural retina, similar to results

reported for TF-bound sequences in cell culture models.17,77–80

The case of CRX illustrates a key challenge for models of cis-

regulation, which is to learn how local sequence context en-

codes different activities of often identical binding sites for a

multi-functional TF.

To address this, we implemented an iterative, active learning

strategy to train models on successive rounds of informative

MPRA data from synthetic DNA sequences (Figure 1A). The

core of the approach is to actively select new training examples

that are likely to improve the model in the next round. In each

round, a pool of candidate synthetic sequences is generated

by performing millions of in silico perturbations on the se-

quences in the current training dataset. To ensure the biological

relevance of the candidate sequences, the pool is filtered to re-

move candidates that are not predicted to have sequence prop-

erties of open chromatin in photoreceptors (STAR Methods).

The pool is then sub-sampled using the current model to prior-

itize those sequences whose predicted activities are the most

uncertain (STAR Methods). This ‘‘uncertainty sampling’’ step
2 Cell Systems 16, 1–15, January 15, 2025
is based on the premise that candidate sequences predicted

by the model with the least confidence will be those examples

most likely to improve the model in the next round.46 Following

uncertainty sampling, the selected sequences are synthesized

and assayed by MPRA in explanted mouse retinas, and the

new data are added to the training dataset. The model is re-

trained on the cumulative training data and evaluated on an in-

dependent test dataset. Models are thus iteratively optimized to

achieve performance above that obtained with only a single

round of genomic training data.

To carry out active learning, we used four-way classifiers that

predict the probability that a given DNA sequence is a (1) strong

enhancer, (2) weak enhancer, (3) inactive sequence, or (4)

silencer in photoreceptors. These discrete classifiers facilitated

the uncertainty sampling step by enabling straightforward calcu-

lations of uncertainty from the probabilities assigned to each ac-

tivity class. Our initial classifier was a modified k-mer support

vector machine (SVM), trained on a genomic dataset20 (training

round 1). We used the SVM for two rounds of active learning

(rounds 2 and 3). We then switched to a convolutional neural

network (CNN) classifier for the last round of active learning

(round 4), owing to the greater expressivity of this architecture.

After completing active learning using discrete classifiers, we

used the final dataset to train a regression CNN. The regression

CNN was used to make quantitative predictions of CRE activity

and for sequence interpretation.

Model performance more than doubles with active
learning
The SVM classifier was initially trained on MPRA data from a

library of 8,879 wild-type and mutant genomic sequences,

each of which was centered on an intact or mutated CRX motif.

After the initial training round (round 1), the SVM performance

on an independent test set did not exceed the accuracy ex-

pected from random guessing, which shows that the genomic

dataset alonewas not enough to learn how the sequence context

encodes activating, repressing, and inactive CRX motifs (Fig-

ure 1B). After two rounds of active learning, the performance of

the SVM nearly doubled (Figure 1B, round 3). To test whether

the improvement in model performance was due to active

learning and not merely to more training data, we compared

models trained on data selected by uncertainty sampling versus

data selected by random sampling (STARMethods). Uncertainty

sampling resulted in a model that outperformed a model trained

on data generated by random sampling (Figure 1C), showing that

active learning produces more informative training data and that

the improved performance is not merely due to the increased

size of the dataset.

We performed the initial rounds of active learning with the

SVM because a CNN trained on the genomic dataset alone

did not generalize to the validation data, likely because the

training dataset was too small (Figure S1A). After generating

more training data in rounds 2 and 3, we successfully trained

a CNN four-way classifier. We used this CNN for the final round

of active learning (round 4) because this architecture can flexibly

encode higher-order features that may not be captured by the

SVM. When we trained the CNN on the round 4 dataset, perfor-

mance increased by 53% relative to the round 3 dataset (Fig-

ure 1D). We tested the effect of uncertainty sampling versus



Figure 1. Iterative machine learning improves predictions of cis-regulatory activity

(A) Summary of active learning approach. Colored dots represent sequences measured in MPRAs (dark blue, strong enhancer; light blue, weak enhancer; green,

inactive; red, silencer), which are used to train amulti-class classifier (solid lines represent the margins between classifications inferred by themodel, and shaded

areas correspond to the inferred activity classes). After generating a filtered pool of candidate sequences, those predicted with high uncertainty under the current

model (black dots closest to the margins) are synthesized, measured by MPRA, and added to the training data for the next round of model fitting.

(B) Iterative improvement of the SVM classifier over two rounds of active learning. Horizontal line represents accuracy expected from random guessing. Boxplots

show the performances of 10-fold cross-validation of the newly added data.

(C) Performance of SVM and CNN classifiers when trained on new data obtained by either random or uncertainty sampling that were added to the training data

from rounds 1 and 2. Boxplots show performances of 10-fold cross-validation.

(D) Iterative improvement of the CNN classifier performance over one round of active learning. Horizontal dashed line and boxplots are as in (B).

(E) Observed activity of synthetic sequences (n = 2,055) predicted with high confidence, stratified by predicted activity class. Horizontal dashed lines correspond

to cutoffs for the activity classes. Enh., enhancer; wF1, weighted F1 score.

(F and G) Observed activity versus activity predicted by the regression CNN for (F) the held-out test set of CRX-bound genomic sequences (n = 1,723) and (G) the

high-confidence sequences (n = 2,055) of (E). Diagonal line indicates x = y.

PCC, Pearson correlation coefficient; SCC, Spearman correlation coefficient. Warmer colors denote higher point density.

See also Figure S1.
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random sampling on the performance of the CNN classifier, and

again we found that a model trained on data selected by active

learning outperformed a model trained on data that included

randomly sampled sequences (Figure 1C).

The global performance measures reported above are based

on all model predictions, regardless of the uncertainty of those

predictions. However, a key advantage of our approach is that

there is an uncertainty estimate for each prediction, and thus

high-confidence predictions can be separated from low-confi-
dence predictions. To test the accuracy of the uncertainty esti-

mate, we synthesized and assayed 2,055 new synthetic se-

quences whose activity was predicted by the CNN classifier

with high confidence (STAR Methods). We found that 72% of

these sequenceswere predicted correctly at round 3 (Figure 1E)

versus only 29% of the test set predictions, which included

both low- and high-confidence predictions. This shows that

the uncertainty estimate successfully captures model confi-

dence and that it is effective for de novo enhancer design by
Cell Systems 16, 1–15, January 15, 2025 3
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focusing attention on the predictions that are most likely to be

correct.

After three rounds of active learning, we used the cumulative

dataset to train a regression CNN, since a model that makes

quantitative predictions of CRE activity is more useful for inter-

preting the role of individual TF binding sites. The regression

CNN achieved a Pearson correlation coefficient (PCC) of 0.61

on an independent test set of genomic CRX-bound sequences76

(n = 1,723, Figure 1F; STAR Methods). Performance was even

higher for the high-confidence dataset (PCC = 0.90, Figure 1G).

A regression CNN trained only on the original genomic data

(round 1) hadmuch lower performance (PCC= 0.29, Figure S1B).

This lower performance is close to the limit of what can be

achieved by training with genomic data alone, because nearly

80% of CRX-bound sequences are in the round 1 dataset or

the test set. Our results show that with active learning, models

can be improved after exhausting genomic training examples.

Active learning is influenced by in silico sequence
generation strategy and measures of uncertainty
While implementing active learning, we tested alternative strate-

gies for two key steps in the active learning cycle: in silico

sequence generation and uncertainty sampling. To generate

new sequences in the first active learning round (round 2), we

performed uniform, random in silico mutagenesis of the original

genomic sequences. This led to only a slight performance

improvement in the SVM (Figure 1B), and we hypothesized

that random mutagenesis likely produced many uninformative

perturbations of small effect. For round 3, we implemented a

motif-centric perturbation strategy, reasoning that adding, sub-

tracting, or moving motifs known to be important in photorecep-

tors would generate more informative training sequences (STAR

Methods). We observed a much greater increase in model per-

formance in round 3, suggesting that the motif-perturbation

strategy was more effective (Figure 1B). In a direct comparison

using equally sized training datasets, we found that the motif-

centric perturbation strategy was much more effective at gener-

ating informative training data (Figure S1C). Because the motif-

perturbation strategy was effective, we also used it to generate

sequences in round 4.

As the measure of model uncertainty, we used Shannon en-

tropy in rounds 2 and 3.When training theCNNclassifier at round

3, we observed that the model performed somewhat better on

strong enhancers (F1 score = 0.28) than it did on silencers (F1

score = 0.17, Figure S1D). We hypothesized that a sampling

strategy targeting potential silencers might improve perfor-

mance. Thus, in round 4, we tested a second uncertainty sam-

pling strategy, margin sampling, in parallel with entropy sam-

pling. Shannon entropy reaches its maximum value when the

classifier model is equally uncertain about all four activity classes

(strong enhancer, weak enhancer, inactive, and silencer). Thus,

entropy sampling selects candidate sequences for which the

modelmakes no strong predictions. In contrast, margin sampling

prioritizes examples for which the twomost likely activity classes

have similar probabilities, while allowing probabilities for the

other two activity classes to be low (STAR Methods).

Using margin sampling, we targeted silencers by prioritizing

sequences for which ‘‘silencer’’ was one of the two most prob-

able classes. In parallel, we also generated additional data using
4 Cell Systems 16, 1–15, January 15, 2025
entropy sampling. With further entropy sampling (round 4a), we

observed substantial improvement in the classification of si-

lencers, but this came at the expense of nearly all predictive

power for strong enhancers (Figure S1D). This suggests that a

third cycle of entropy sampling caused an episode of ‘‘cata-

strophic forgetting’’ in which a model forgets previously learned

information when learning new information.81 With margin sam-

pling (round 4b), the CNN improved its performance on silencers

while maintaining its performance on strong enhancers (Fig-

ure S1D). These results suggest that entropy sampling works

well in early rounds of active learning when a model is relatively

naive, but margin sampling works well in later rounds when it is

necessary to improve model performance on certain classes of

predictions.

The model learned to distinguish CRX motifs with
different effects
After generating three rounds of new data using active learning

with the classifiers, we used the cumulative dataset to train the

regression CNN (Figure 1F), and the regression model was sub-

sequently used to analyze CRX motifs in enhancers and si-

lencers. In previous work, we found that a 4A>C mutation in

the CRX motif abolishes binding82 and tends to cause loss of

activation in enhancers and a loss of repression in silencers.20,76

We therefore asked whether the regression CNN learned to

distinguish activating from repressing CRX sites, as defined by

the change in CRE activity when the CRX motif is mutated by

4A>C. To generate model predictions for specific CRX motifs,

we used the CNN to assign importance scores to the CRXmotifs

in every genomic sequence of the test set used to evaluate the

regression CNN (STAR Methods; Figures S2A and S2B). We in-

terpreted positive importance scores as predicting activating

CRX motifs and negative importance scores as predicting re-

pressing motifs. Consistent with these predictions, sequences

with CRX motifs assigned positive importance typically lost ac-

tivity when the motifs were mutated, while the opposite was

true for sequences with CRX motifs assigned negative impor-

tance (Figure 2A). The model also correctly predicted non-func-

tional CRX sites. CREs with CRX importance scores near zero

exhibited only small changes in activity when CRX sites were

mutated, despite those motifs being high-scoring matches for

the CRX position weight matrix. Thus, using training data gener-

ated by active learning, the model learned to distinguish among

activating, repressing, and inactive CRX motifs. These effects

could not have been discovered by standard motif analyses

because CRX motifs with different effects all match the CRX po-

sition weight matrix equally well, and their sequences are often

identical.13,16,20

We next examined whether the model learned the known

repressive effect of homotypic clusters of CRX sites. We previ-

ously showed that synthetic and genomic sequences with multi-

ple copies of the CRX motif are often repressive.16,20,83 Using an

in silico perturbation analysis,84 we quantified the predicted ef-

fect of increasing the number of CRX motifs from 1 to 4 in a set

of 4,658 randomly generated background elements (Figures 2B

and S2C). The model correctly predicted the repressive effect

of increasing the number of CRX sites in a sequence, matching

the results of previous experiments showing that most synthetic

sequences with four CRX sites are repressive.16,83
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Figure 2. Regression CNN discriminates

among activating, inactive, and repressive

CRX motifs

(A) Predicted (left) and observed (right) effects of

mutating CRX motifs in genomic CRX-bound

sequences, stratified by CRX importance scores.

n = 173 negative importance, 388 not important,

173 positive importance. WT, wild-type CRX mo-

tifs; MUT, mutated CRX motifs; Pred, predicted;

Obs, observed.

(B) Predicted repressive effect of increasing

numbers of CRX motifs in 4,658 simulated se-

quences. Horizontal dashed lines denote activity

class boundaries.

(C) Predicted effect of background GC nucleotide

content on the activating or repressive effect of

adding four CRX motifs to a sequence (n = 4,658

simulated sequences). Each dot represents a

different background sequence. Warmer colors

denote higher point density.

See also Figure S2.
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Finally, the model captured the positive influence of high gua-

nine and cytosine (GC) sequence context on the activities of

CRX sites. The importance assigned by the model to four CRX

sites in the in silico analysis increased as the surrounding GC

content increased (Figure 2C, PCC = 0.33), even though GC

content itself is not predicted to independently influence activity

(Figure S2D). Among genomic CRX chromatin immunoprecipita-

tion sequencing (ChIP-seq) peaks with varying numbers of CRX

sites,13 the Pearson correlation between measured activity and

GC content is 0.23. Taken together, these results show that the

model successfully learned the sequence context that distin-

guishes activating CRX sites in enhancers and repressive CRX

sites in silencers, a crucial feature of cis-regulation in developing

photoreceptors.

The model learned the effects of other TF motifs
enriched in photoreceptor CREs
Sequences in the training dataset all contain CRX motifs, but

most sequences also contain motifs for other cell-type-specific

TFs that interact with CRX. We examined whether the model

learned to distinguish functionally distinct instances of motifs

for these additional TFs. We focused on motifs for six lineage-

specific TFs whose binding sites are enriched in CRX-bound

CREs.20 To test the model, we used a dataset of CRX and
Cel
non-CRX motif mutations in a set of 29

strong enhancers (STAR Methods). We

compared the model-assigned impor-

tance scores for each non-CRX motif

against the measured effect of mutating

that individual motif by scrambling it.

Motif-level importance scores were high-

ly correlated with the measured effects

for motif mutations for these six addi-

tional TFs (PCC = 0.684, Figure 3A). Sites

for the retinoid-related orphan receptor

beta (RORB) in particular were assigned

a wide range of importance scores by

the model, and they exhibited a corre-

sponding range of effect sizes when
mutated. To further examine the predicted effects of RORB mo-

tifs, we increased our sample size by considering not only the

single RORB motif mutations of the 29 strong enhancers but

also RORB motif mutants made in the presence of mutations

of other motifs (n = 258). We found that relative affinities of the

RORB motifs corresponded with the importance scores as-

signed by the model and that mutations of higher affinity sites

were predicted by the model to have larger effects. The pre-

dicted effects of the motif mutations correlated with the

measured effects (PCC = 0.677, Figure 3B), demonstrating that

the model learned to distinguish high- and low-affinity RORB

motifs.

The model learned the relative effect sizes of motifs for RORB

and neural retina leucine zipper (NRL) on the activity of se-

quences containing a CRX motif. An in silico perturbation anal-

ysis predicted that adding RORB motifs to a sequence with

one central CRX motif has a stronger positive effect on cis-reg-

ulatory activity than the addition of NRL motifs (Figures 3C and

S3A). These predictions are consistent with experimental data

showing that the loss of RORB motifs generally causes a greater

reduction in activity than the loss of NRL motifs (Figure 3D). The

model also correctly predicted the repressive effects of sites for

the transcriptional repressor growth factor independent 1 (GFI1)

(Figure S3B), consistent with our previous finding that GFI1 sites
l Systems 16, 1–15, January 15, 2025 5
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Figure 3. Regression CNN learned the ef-

fects of other TF motifs

(A) Change in predicted importance of non-CRX

motifs versus observed effect when motifs are

individually mutated in a set of strong enhancers

(n = 32 singlemotif mutants). WT, wild-typemotifs;

MUT, mutated motifs.

(B) Change in predicted RORB motif importance

versus observed effect motif mutants in a set of

strong enhancers (n = 258 mutant sequences).

Predicted motif importance corresponds with

motif affinity, indicated by the color map repre-

senting the motif affinity relative to the consensus

binding sequence, in arbitrary units of relative

Gibbs free energy (DDG).

(C) Predicted effect of adding NRL (left) or RORB

(right) motifs to simulated sequences containing

one CRXmotif (n = 4,658). Horizontal dashed lines

denote activity class boundaries. Zero on the x

axis denotes the effect of one CRX motif.

(D) Observed effects of scrambling all motifs for

NRL (left, n = 193 one motif, 25 two motifs, 1 three

motifs) or RORB (right, n = 178 one motif, 9 two

motifs, 1 three motifs) in a set of genomic strong

enhancers,20 stratified by the number of motifs

scrambled. Dashed line indicates no effect.

(E) Predicted effects of a CRX motif and an NRL

(left) or GFI1 (right) motif at all possible positions.

Each pixel corresponds to the mean predicted

effect of the two motifs in 4,658 different back-

ground sequences. White diagonal denotes

excluded arrangements where the motifs would

have overlapped. The basal promoter is at posi-

tion 164. Color bar indicates mean predicted motif

effects across background sequences in arbitrary

units.

See also Figure S3.
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are enriched in genomic CRX-bound silencers.20 The results

above show that the model learned the relative average contri-

butions of several different cell-type-specific TF binding motifs.

Explicit information about TF binding motifs was not provided

as part of the model training but was instead learned by the

model by iteratively training on informative data consisting only

of DNA sequence and measured activity. These results validate

our active learning strategy as an effective method to generate

the informative training data to learn the complex interactions

between TF binding motifs that determine cell-type-specific

cis-regulatory activity.

While the global performance of the model shows that it has

not yet learned all the properties of CREs in developing photo-
6 Cell Systems 16, 1–15, January 15, 2025
receptors, the results above indicate

that the model accomplished the key

goal of learning to distinguish the

different effect motifs for multiple cell-

type-specific TFs. This suggests that

the model in its current state can serve

as a hypothesis generator about different

features of photoreceptor CREs. We

generated hypotheses about motif order

and spacing by conducting two in silico

perturbation analyses that systemati-
cally varied the positions of a CRX motif and either an NRL motif

or a GFI1 motif (STAR Methods). This analysis predicts that the

activity of CRX and NRL motifs increases as they are moved

closer to the basal promoter, as well as a synergistic effect be-

tween CRX and NRL at certain spacings (Figure 3E, left). The

model predicts that sequences with GFI1 and CRX motifs are

largely repressive, except when the CRX motif is within

�65 bp of the basal promoter, and the GFI1 motif is placed in

a more distal position (Figure 3E, right). However, when the

GFI1 motif is placed close to a promoter-proximal CRX motif,

the sequence activity is predicted to again be repressive, sug-

gesting that the model infers that GFI1 acts through short-range

repression.85 This analysis shows how themodel can be used to
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generate hypotheses about complex, higher-order interactions

between TF binding sites, which would be difficult to identify in

the absence of a guiding model.

The model identifies discriminative features between
CREs with similar TF binding sites
Many TF-bound DNA sequences that reside in open chromatin

lack cis-regulatory activity, despite having occurrences of bind-

ing motifs that are similar or identical to motif occurrences in

active CREs.13,17,77,79,86,87 Accurate models of CREs should

be able to identify sequence features that are necessary and suf-

ficient to discriminate between inactive and active sequences

with similar or identical TF binding sites. We used the regression

CNN to identify functional differences between an active and an

inactive photoreceptor-accessible chromatin sequence. Each

sequence had one copy of the CRXmotif and one copy of amotif

for NRL, a rod-specific TF (Figure 4A). While the CRX motifs

differed slightly between the two sequences, the NRL motifs

were identical. There were no additional motifs known to be

enriched in CRX-bound strong enhancers20 present in either

sequence.

Using the regression CNN to predict the importance of each

nucleotide in these sequences, we found significant differences

between the inactive and the active sequences (Figure 4A). Only

the NRL site in the strong enhancer was scored as important,

while an identical NRL site in the inactive sequence was scored

as not important. In the strong enhancer, the NRL motif was

flanked by high-importance nucleotides that form a near-

optimal match to a nuclear receptor 1 (NR1)-family motif (Fig-

ure 4B). This motif was not detected as globally enriched among

CRX-bound strong enhancers in a prior motif enrichment anal-

ysis.20 While NR1-family TFs include factors that are known to

interact with CRX, NRL, and other cell-type-specific TFs in pho-

toreceptors,59,88 the identified motif is recognized by a clade of

nuclear receptor DNA-binding domains that is distinct from that

of more well-characterized, photoreceptor-specific nuclear re-

ceptor TFs. We tested the model’s predictions of important

positions in the strong enhancer using an MPRA-based pertur-

bation analysis (Figure 4C). Scrambling the CRX or NRL motifs

each decreased activity, and scrambling both sites together

abolished nearly all activity, showing that both the CRX and

NRL motifs are necessary for the function of the strong

enhancer. Scrambling the NR1-family motif also led to a near-

total loss of activity, while perturbations to any other region of

the enhancer had little or no effect on activity. These results

show that all three motifs contribute to the activity of the strong

enhancer, as predicted by the model.

We next tested whether the NR1-family motif was sufficient to

activate the inactive sequence. We swapped the sub-sequence

containing the NR1motif into the inactive sequence, producing a

chimeric sequence that was nearly as active as the original

strong enhancer (Figure 4D). Other chimeric sequences that

did not include the region with the NR1-family motif did not

lead to activation. Together with the results above, these exper-

iments show that the NR1 motif is both necessary for activity in

the strong enhancer and sufficient to confer activity on the inac-

tive sequence. The model thus discovered a functionally impor-

tant motif that had failed to reach statistical significance in a prior

global enrichment analysis.
Finally, we found an interaction between theNRL andNR1mo-

tifs in the strong enhancer.When the NRLmotif wasmoved away

from the NR1 motif, the NRL motif lost its predicted importance

(Figure S4A). Interestingly, when theNRLmotif was placed at po-

sition 128, it disrupted the original NR1-family motif, but it

created a cryptic NR1:NRL dimer motif to which the model as-

signed high importance (Figures S4A and S4B). Corresponding

experimental perturbations bear out the model predictions,

showing a loss of activity when NRL ismoved out of its native po-

sition, while activity was restored upon creation of the cryptic

NR1:NRL site (Figure S4A). Thus, the model learned to identify

an interaction between two non-CRX motifs.

We examined a second active/inactive sequence pair, each

containing a central CRX motif and a motif for the nuclear recep-

tor RORB (Figure 4E). In the inactive sequence, the model pre-

dicted that neither CRX nor RORBmotif was important. Notably,

in the strong enhancer, the model predicted that the CRX motif

was not important, but the RORBmotif was. The model also pre-

dicted that the RORBmotif would remain active when positioned

30 of the CRXmotif but that it would lose activity when positioned

50 of the CRX motif. These predictions were confirmed by exper-

imental motif perturbations (Figure S4C) and by placing the

RORB motif in different positions of the strong enhancer (Fig-

ure 4F). Furthermore, tests of chimeric sequences showed that

swapping the strong enhancer RORB motif into the inactive

sequence was sufficient to confer high activity only if the

RORB motif was placed 30 of the CRX motif (Figure 4G). These

results show that the model correctly identified a general posi-

tional requirement of the RORB motif in this strong enhancer.

Taken together, these analyses of active/inactive sequence pairs

confirm that the model learned critical features of sequence

context that distinguishmotifs for the same TF that have different

effects.

Compared with random sampling, uncertainty sampling
oversamples active training examples
During the course of active learning, we found that sequences

selected by uncertainty sampling were enriched for active se-

quences (i.e., enhancers and silencers) relative to genomic se-

quences or synthetic sequences picked by random sampling

(Figure 5A). This was unexpected, because the activities of

the in silico-generated sequences are not known when they

are sampled. In the first two active learning rounds (rounds 2

and 3), uncertainty sampling selected sequences that, upon

measurement, were enriched for weak and strong enhancers.

Notably, about half of the new sequences in round 3were strong

enhancers, which was more than double their frequency in the

randomly sampled set. In round 4, silencers were the most over-

sampled activity class. This was true for both margin sampling

(round 4b), which targeted sequences that might be silencers,

as well as for entropy sampling (round 4a), which sampled se-

quences based on model uncertainty across all four activity

classes. These results show that uncertainty sampling oversam-

ples active sequences as a matter of course, even though the

sequence activities are not known when they are picked.

To further explore this phenomenon, we performed retrospec-

tive simulations using a published genome-wide MPRA dataset

for enhancer activity in K562 cells.89 We trained a binary classi-

fier CNN to distinguish the most active enhancers (top 20%)
Cell Systems 16, 1–15, January 15, 2025 7
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Figure 4. Regression CNN identifies discriminative sequence features between active and inactive sequences

(A) Relative nucleotide contribution scores and locations of known motifs for an inactive sequence (top) and a strong enhancer (bottom).

(B) NR1-family motif match in the strong enhancer. X-tick labels show the motif sequence in the enhancer. The position and orientation of the motif is indicated in

the title.

(C) Observed effect of scrambling different components of the strong enhancer. Error bars show standard deviation of 3–5 independent scrambles, or 4 inde-

pendent replicates of wild type.

(D) Effect on activity of swapping strong enhancer regions into the inactive sequence. Cartoons show the chimeric constructs with colors matching (A). Error bars

show standard deviation of one sequence across 3 replicates. C, CRX motif; N, NRL motif.

(E) Relative nucleotide contribution scores and locations of known motifs for a second inactive sequence (top) and strong enhancer (bottom).

(F) Observed effect on activity of moving the RORB motif within the strong enhancer (top) and predicted contribution of the RORB motif to activity (bottom).

Horizontal dashed lines represent the activity (top) and motif contribution (bottom) of the wild-type sequence.

(G) Effect on activity of swapping the strong enhancer RORB motif into the inactive sequence at different positions. Error bars show standard deviation of one

sequence across 3 replicates. C, CRX motif; R, RORB motif.

See also Figure S4.
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Figure 5. Entropy sampling oversamples

active sequences

(A) Distribution of activity classes of sampled se-

quences in each round of random or uncertainty

sampling. Round 1 is the initial genomic training

dataset.

(B) Schematic of entropy sampling benchmarking

analysis using K562 candidate CREs (cCREs). At

each round, the validation chromosomes are used

to monitor CNN training, and the test chromo-

somes are used to evaluate final performance.

(C–E) Comparison of multiple rounds of entropy

versus random sampling for (C) CNN perfor-

mance, (D) fraction of cumulative training data that

are active sequences, and (E) total number of

active sequences sampled. Lines denote the

mean from 10-fold cross-validation, shaded areas

denote one standard deviation, and black denotes

CNN performance with the full dataset.
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from inactive sequences (bottom 50%). There were no silencers

in this dataset. After holding out validation and test datasets, we

randomly assigned 4,000 sequences as initial training data out of

�46,000 training sequences. The remaining training sequences

were treated as ‘‘unlabeled’’ data (Figure 5B). We then used en-

tropy sampling or random sampling to pick batches of 2,000 at a

time until all available data were exhausted.

Entropysamplingwasmoreefficient andoutperformed random

sampling in theearly roundsof training,when there stillwasa large

pool of unlabeled examples available. After five rounds of entropy

sampling, model performance doubled, and performance ap-

proached the upper bound after using only �40% of the full

training dataset (Figure 5C). As was observed with active learning

in the mouse retina, entropy sampling oversampled unlabeled

active sequences, until those sequences were exhausted from

the pool of potential examples (Figures 5D and 5E). The perfor-

manceof themodel improvedmost in roundswhere entropy sam-

pling produced a dataset enriched for high-activity sequences.

These results confirm that a dataset enriched for active se-

quences is more informative for model training. In these bench-

marking experiments with an existing dataset, the pool of poten-

tial training examples was limited, and eventually high-activity

sequences were exhausted. However, in real-world scenarios,

the training dataset can be indefinitely increased using synthetic

DNA sequences and functional genomics technologies such as

MPRAs. Thus, informative, active sequences can be added to

the training data until the desired level of model performance is

achieved.

DISCUSSION

We have presented an active machine learning framework to

learn the sequence context that causes different occurrences

of motifs for the same TF to activate, repress, or show no ac-

tivity. We showed that active learning more than doubled the

performance of models trained on a single round of genomic

data alone and that a model trained by active learning makes
accurate predictions, recapitulates prior knowledge, and re-

veals novel sequence features necessary and sufficient for

enhancer activity. Critically, the model distinguishes between

binding sites with identical sequences but opposite functions,

thus achieving the major goal of this study. Our work demon-

strates how active learning leverages the capacities of DNA

synthesis and functional genomic assays to generate succes-

sive rounds of informative training data. With this approach,

we overcome a critical limitation of existing genomic datasets,

which is that they include too few natural training examples,

and these are not sufficient to learn the complex, higher-order

interactions that distinguish activating and repressing binding

sites for the same TF. Given the continually decreasing cost of

DNA synthesis and the ever-growing capacities of functional

assays, active machine learning has broad potential across

a range of applications, including large-scale perturbation

studies of CREs and model-guided design of synthetic regula-

tory DNA elements.

Our results indicate that active learningmay be amore efficient

approach because it generates training data that are enriched for

positive examples of highly active sequences, whereas genomic

sequences and random sequences contain a larger fraction of

negative examples of inactive sequences (Figure 5A). We found

that uncertainty sampling identifies unlabeled candidate se-

quences which, upon measurement, are more likely to fall into

the strongest activity classes (strong enhancers and silencers).

This suggests that the candidate sequences that are predicted

by the model with the least confidence contain functionally

relevant patterns of sequence elements, and as a result

these sequences are more likely to be active when measured.

Such sequences may contrast with low-information, inactive se-

quences that are easily learned by the model, and thus they are

not prioritized by uncertainty sampling. If this is true, then the

complex, higher-order interactions between TF binding sites

that define CREs will not be learned from training data with a

large fraction of inactive genomic or random sequences. In

fact, the problem of limited genomic training examples becomes
Cell Systems 16, 1–15, January 15, 2025 9
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even more acute if training data with a high fraction of active se-

quences are necessary to fully model CREs, because only a mi-

nority of candidate CREs are active when tested by functional

assays.13,17,77,79 Complementary training approaches currently

rely on hundreds of millions of random sequences35,38 or hun-

dreds of thousands of genomic sequences34,89,90 measured in

a single, large-scale screen. Our work suggests that many of

the sequences in these datasets may be low-information training

examples and that iteratively training models on smaller but

more informative training data will be more effective. This

conclusion is supported by a recent study showing that a

deep learning model trained on a small but highly active MPRA

dataset performed nearly as well as a model trained on a 103

larger MPRA dataset composed of less active genomic

sequences.91

The most dramatic examples of TF binding sites with oppo-

site effects are sites in enhancers and silencers bound by the

same TF.16,17,92–95 Loss of the CRX binding motif in enhancers

causes a decrease in CRE activity, while loss of the same motif

in silencers causes an increase in activity. Models that correctly

predict the direction of effect of motif mutations have learned

the local contextual patterns responsible for the differences in

motif effects. However, current deep learning models of gene

expression often fail to predict the direction of effect of non-

coding variants and thus have not captured the effects of local

sequence context.96–98 This may in part be due to a lack of si-

lencers in most MPRA training datasets, because MPRAs are

often not designed to capture silencer effects. An advantage

of our MPRA in mouse retinal explants is that we measure

both enhancer and silencer activity, thereby generating training

data that allow the model to learn the contextual features dis-

tinguishing binding sites in enhancers and silencers. Non-cod-

ing genetic variants often change activity in a direction that is

not expected,99 highlighting the importance of creating training

data that can disambiguate between positive and negative ef-

fects of the same motif.

Uncertainty sampling is the crucial step of active learning. In

this work, we used discrete classifiers to facilitate uncertainty

sampling by using classifier-generated probabilities to calcu-

late uncertainty. However, models that make quantitative pre-

dictions of cis-regulatory activity are often more useful, and

an improvement on this work would be to implement active

learning in a regression setting by taking advantage of sampling

strategies that rely on Gaussian and neural processes.49,100–102

Our work also highlights the risks of relying too heavily on one

sampling technique. In the initial rounds of active learning, we

used entropy sampling, which generated enhancer-biased da-

tasets (Figure 5A) that led to improved predictions of en-

hancers. In round 4, both entropy sampling and margin sam-

pling produced training datasets biased toward silencers, but

entropy sampling resulted in catastrophic forgetting of strong

enhancers (Figure S1D),81 while margin sampling resulted in

continued improvements to the model. Future work can protect

against catastrophic forgetting by employing diversity

criteria103,104 and using multiple sampling techniques in each

round, including ensemble-based sampling.105,106 Because

active learning can generate imbalanced training data, training

strategies to mitigate the effects of imbalanced data, such as

oversampling the minority class,107 may improve performance.
10 Cell Systems 16, 1–15, January 15, 2025
When generating candidate sequences in silico, we found that

accounting for prior knowledge of motifs produced more infor-

mative perturbations than randommutagenesis. However, such

an approach is biased against discovering new sequence fea-

tures. Recent advances in generative modeling,29,91 gradient-

based design,108,109 transfer learning,110 and evolutionary-

inspired data augmentation111 could provide a complementary

approach to generating training data. Active learning is a

broadly applicable and effective strategy for learning the impact

of sequence context on TF binding sites, one that can take

advantage of these ongoing developments in deep learning.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E. coli 10-beta electrocompetent cells NEB Cat#C3020K

Chemicals, peptides, and recombinant proteins

Q5 High-Fidelity 2X Master Mix NEB Cat#M0492S

EcoRI-HF restriction enzyme NEB Cat#R3101S

NotI-HF restriction enzyme NEB Cat#R3189S

SphI-HF restriction enzyme NEB Cat#R3182S

SpeI-HF restriction enzyme NEB Cat#R3133S

NheI-HF restriction enzyme NEB Cat#R3131S

TRIzol ThermoFisher Cat#15596026

Critical commercial assays

Monarch PCR Cleanup Kit NEB Cat# 1030S

Monarch DNA Gel Extration Kit NEB Cat#T1020L

TURBO DNA-free kit Invitrogen Cat#AM1907

Superscript IV first strand synthesis kit Invitrogen Cat#18091050

Zymo Pure II Plasmid Maxiprep Kit Zymo Cat#D4203

Deposited data

MPRA assay of CRX-bound genomic

sequences (Round 1 training data)

Friedman et al.20 GSE165812

MPRA assay of active learning datasets This study GSE241353

MPRA assay of CRX-bound sequences

(test dataset)

Shepherdson et al.76 GSE230090

MPRA assay in K562 cells Agarwal et al.89 https://doi.org/10.1101/2023.03.05.531189

Experimental models: Organisms/strains

M. musculus: strain background CD-1 Charles River Strain code 022

Oligonucleotides

CRE sequences for MPRA libraries 2-4 Agilent Listed in Data S1

Primers IDT Listed in Table S2

Recombinant DNA

pJK01_Rhominprox_DsRed AddGene Plasmid #137489

pJK03_Rho_basal_DsRed AddGene Plasmid # 173490

Software and algorithms

Numpy https://numpy.org/ https://doi.org/10.1038/s41586-020-2649-2

Scipy https://scipy.org/ https://doi.org/10.1038/s41592-019-0686-2

Pandas https://pandas.pydata.org/ https://doi.org/10.5281/zenodo.3509134

Matplotlib https://matplotlib.org/ https://doi.org/10.1109/MCSE.2007.55

Logomaker Tareen and Kinney112 https://doi.org/10.1093/bioinformatics/btz921

Data processing and model code This study https://doi.org/10.5281/zenodo.4263463
EXPERIMENTAL MODEL DETAILS

Mouse retina explants
CD-1 mice were obtained from Charles River Laboratory. Retinas from newborn (P0) mice were dissected and electroporated.64

The sex of the mice could not be determined at the P0 stage and mice were thus not selected by sex. Retinas were dissected in

serum-free medium (SFM; 1:1 Dulbecco’s Modified Eagle Medium (DMEM):Ham’s F12 (Gibco, 11330-032), 100 units per ml peni-

cillin and 100 mg ml�1 streptomycin (Gibco, 15140122), 2 mM GlutaMax (Gibco, 35050-061) and 2 mg ml�1 insulin (Sigma, I6634)
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from surrounding sclera and soft tissue leaving the lens in place. This study was performed in strict accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled

according to protocol A-3381-01 approved by the Institutional Animal Care and Use Committee of Washington University in

St. Louis.

METHOD DETAILS

MPRA Library design
All MPRA libraries were obtained using custom oligonucleotide (oligo) synthesis from Agilent Technologies�.20,113 Every MPRA li-

brary contained 164 bp test sequences marked with unique 9 bp barcodes following the scheme: 5’ priming sequence, EcoRI, library

sequence, SpeI, filler sequence, SphI, CRE barcode (cBC), NotI, 3’ priming sequence. The filler sequence is used to ensure all oligos

are 230 nt for synthesis and is subsequently eliminated during cloning. In addition to this common design scheme, all libraries con-

tained several groups of constant sequences: (1) a construct for the basal promoter alone, which is present with multiple redundant

barcodes, (2) a set of 150 scrambled genomic sequences (3) 20 genomic sequences that span the full dynamic range of the assay.

The MPRA libraries are described in Table S1 and Data S1.

Plasmid library cloning
We created MPRA libraries from oligo pools using two-step cloning as described20,113 with the following modifications. Oligos were

amplified throughmultiple PCR reactions (New England Biolabs [NEB] Q5High-Fidelity 2XMaster Mix, cat. #M0515, see Table S2 for

primer sequences), purified from an agarose gel, digestedwith EcoRI-HF andNotI-HF (NEB), and then cloned into the EagI and EcoRI

sites of pJK03 (AddGene #173,490) in multiple ligation reactions (NEB T4 ligase). Ligation products were transformed into either

5-alpha or 10-beta electrocompetent cells (NEB) and grown in liquid LB-Amp cultures. Plasmid pools were digested with SphI-HF

and SpeI-HF and treated with Antarctic phosphatase or Quick CIP (NEB), then ligated to reporter gene inserts in multiple reactions

(NEB T4 ligase). Ligation products were transformed into electrocompetent cells and grown in liquid culture from which we prepared

plasmid DNA.

We next cloned the Rho basal promoter into the plasmid library in between the test sequence and its cognate barcode. Basal pro-

moter inserts were prepared by amplifying the Rho basal promoter and DsRed from the plasmid pJK01 (AddGene #173,489) using

the forward primer MO566 and reverse primers that add 9bp multiplexing barcodes (mBC, Table S2), purified from an agarose gel,

and digested with NheI-HF and SphI-HF (NEB). Adding mBCs to the reporter gene allows us to test larger libraries by amplifying sub-

libraries with different primer sets and cloning each sublibrary in parallel with a unique mBC. When necessary, we could then mix

sublibraries (Table S1) for parallel analyses. Barcode complexity was always verified by sequencing the final library on the Illumina

MiniSeq� platform.

Electroporation of mouse retinal explants
Dissected retinas were transferred to an electroporation chamber (model BTX453 Microslide chamber, BTX Harvard Apparatus114)

containing 0.5 mg ml�1 of MPRA library. Five retinas were pooled for each biological replicate and at least three replicates were

performed for each library (Table S1). Five square pulses (30 V) of 50-ms duration with 950-ms intervals were applied using a pulse

generator (model ECM 830, BTX Harvard Apparatus). Electroporated retinas were removed from the electroporation chamber and

allowed to recover in SFM for several minutes before being transferred to the same medium supplemented with 5% fetal calf serum

(Gibco, 26140-079). The retinas were then placed (lens side down) on polycarbonate filters (Whatman, 0.2 mmpore size 110,606) and

cultured at 37 �C in SFM supplemented with 5% fetal calf serum for eight days.

RNA extraction
Retinas were harvested in TRIzol, homogenized with a sterile needle, and RNA was extracted following the manufacturer’s protocol.

RNA was treated with TURBO DNase and then reverse transcribed with SuperScript IV First Strand Synthesis following the manu-

facturer’s protocol. Barcodes were amplified from cDNA and plasmid pools with Q5 using primers BC_CRX_Nested_F and

BC_CRX_R for 25 cycles. We performed 2 PCR reactions per cDNA sample and 1-2 reactions per plasmid pool. PCRs from the

same sample were then pooled and purified. Custom sequencing adapters were added with two rounds of PCR with Q5. The final

libraries were sequenced on the Illumina NextSeq or NovaSeq platform.

QUANTIFICATION AND STATISTICAL ANALYSIS

MPRA data processing
Sequencing reads were filtered for reads that contained both the cBC and the mBC (when utilized) in the correct sequence context.

One sequencing library (Table S1) contained a systematic error that led to N’s in positions 5, 16, 21, 27, 29, and 34. Position 5was in a

sequencing adapter, positions 16 and 21 were in constant regions, and positions 21, 27, and 34 were in the mBC region. Since the

mBC could only be one of two 9 bp sequences with a Hamming distance of 8, we could still unambiguously assign mBC-cBC pairs if

there are no other errors in the read outside of these 6 positions.
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We removed cBCs with fewer than 50 counts in the plasmid pool or with a coefficient of variation above 0.8 across cDNA sam-

ples. Each sample was then normalized by sequencing depth; sublibraries that were cloned separately but co-electroporated

were processed separately to account for any cloning batch effects. cDNA barcodes were normalized to plasmid barcode abun-

dances; then, barcodes corresponding to the same CRE were averaged together to obtain an activity score for each CRE in each

replicate. These activity scores were normalized to within-sample basal activity and then averaged together to obtain a final ac-

tivity score. In cases where basal recovery was poor (median RNA/DNA barcode ratio below 0.05 in any one replicate), we calcu-

lated a pseudobasal activity using the cBCs corresponding to scrambled sequences. We took this as a reasonable approxima-

tion of basal activity because the average activity of scrambled sequences in our initial library is no different from basal. Activity

scores were discretized into four classes using the cutoffs we previously reported.20 All activity scores and statistics are in

Data S2.

SVM classifiers of MPRA activity
For our SVM classifier of MPRA activity, we implemented a version of the k-mer kernel that accounts for k-mer position. Since all

sequences in our initial training data were centered on a high-quality CRX motif, k-mer position effectively reflects the distance of

a k-mer from a CRX motif. As Giguère et al. show,115,116 the Generic String Kernel for any two strings y; y0 is:

GSðy; y0;n;sp;scÞ =
Xn
k = 1
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where n controls the maximum length of k-mers, sp controls the weight of k-mer position, sc controls the weight of k-mer similarity,

and Jk is a k-mer encoding function. (We use k wherever Giguère et al. used l.)

When sc = 0, the second exp becomes an indicator function that is only true if the two k-mers are identical. If we further remove the

first summation from all 1;.;n possible k-mers and only consider k-mers of length n, we can rewrite the above kernel function as:
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When sp = N, the first exp becomes constant and we recover the k-mer kernel.117,118 We extended Giguère et al.’s implementation

for peptide sequences to allow for DNA k-mers; using this implementation, we pre-computed the Gram matrix for all available data.

Then, we used the SVC class from scikit-learn119 with probability = True to fit our multi-class classifier. We performed a grid search

over the hyperparameters k˛ ½6;8� and sp ˛ ½0; 3;10; 20;50;N� using five-fold cross-validation on our initial training data. We

selected k = 6; sp = 10 based on the Area Under the Receiver Operating Characteristic (AUROC) and used these hyperparameters

for all future modeling.

CNN classifiers of MPRA activity
Our CNN was designed as a multi-class classifier that uses one-hot encoded 164-bp long DNA sequence (A = [1,0,0,0], C =

[0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) to predict its activity in retinal MPRAs. Our model architecture consists of two convolutional

layers, a max-pooling layer, a third convolutional layer, and a second max-pooling layer; this is followed by a single fully con-

nected layer, and finally a four-node output layer with log soft-max activation, which corresponds to the log-probability the

sequence belongs to each of four classes. Every convolutional and fully connected layer is followed by batch normalization,

Leaky ReLU activation, and dropout regularization. We implemented the model in Pytorch120 and used Selene121 to train the

model with Stochastic Gradient Descent (learning rate = 0.0001, momentum = 0.9, weight decay = 10-6), negative log likelihood

as a loss function, and a batch size of 64. We did not deploy minority oversampling or any other training-based method for

learning on imbalanced datasets. for We fit the model for 500 epochs using the default learning rate scheduler in Selene and

kept the model with the lowest loss on a held-out validation set. We manually adjusted hyperparameters and model architectures

to yield best performance on the validation set when using Round 3 as training data. We used these hyperparameters for all other

datasets.

We created a validation set for the CNN by randomly sampling 10% of our original genomic sequences and then adding all per-

turbations derived from those sequences in Rounds 1-3. Similarly, all perturbations derived from our test set (described below) were

removed from training and validation datasets for all machine learning models.

Evaluating model performance on test datasets
For each round and for eachmodel, we performed ten-fold cross-validation on the newly added data while holding any previous data

constant. This strategy ensures that the variation in model performance is only due to variation within the new data. We evaluated

model performance on two independent MPRA test datasets that represent different prediction tasks.

The SVM test set is an exhaustive motif perturbation analysis of 29 CRX ChIP-seq peaks that are strong enhancers in our original

Round 1 data20; 17 of these become weak enhancers when all CRX motifs are mutated, while 12 remain strong enhancers. For each

sequence, we computed the predicted occupancy for our reference list of 8 TFs. Thenwe selected all possible combinations ofmotifs

and scrambled each motif and 3 bp of flanking sequence until its predicted occupancy was below 0.01. We tested these 711
e3 Cell Systems 16, 1–15.e1–e6, January 15, 2025
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sequences in the same library as Round 3 (Table S1). This test set assesses the ability of the model to predict the effects of pertur-

bations to TF binding sites in highly active enhancers. A limitation of this test set is that the classes are imbalanced (44% strong en-

hancers vs 3.7% silencers).

The CNN test set includes 1,723 CRX ChIP-seq peaks from a parallel study76 that were not used elsewhere in the active learning

pipeline. This test set reflects the natural ratio of enhancers to silencers among wild-type CRX-bound sequences (8% strong en-

hancers, 22% silencers). These sequences were not centered on CRX motifs so we could not use it to evaluate the SVM because

the kernel function considers absolute k-mer positions, rather than relative positions, and thus requires input sequences centered

on a CRX motif as a reference point. We normalized the published activity scores to the basal Rho promoter and grouped strong

and weak silencers into one silencer category, but otherwise did not re-process the data.

We utilized the F1 score as our evaluation metric for both the SVM and the CNN classifier. For any class i, the F1 score is the har-

monic mean between the precision and recall, or equivalently, F
ðiÞ
1 = 2TPi

2TPi+FPi+FNi
where TP is the number of true positives, FP is the

number of false positives, and FN is the number of false negatives. The weighted F1 score is F1 =
P

i
Ni

NF
ðiÞ
1 whereN is the total number

of examples and Ni is the number of examples belonging to class i.

In silico candidate sequence generation
In each round, we generated a new pool of candidate sequences by perturbing sequences from the current round of training

data. We defined multiple operations and performed combinations of these operations many times to generate multiple candi-

date sequences from each training sequence. In Round 2, the possible operations were: (1) randomly mutagenize �12% of the

positions (the exact number of positions was chosen by sampling from a Poisson distribution), (2) insert, delete, or move a

random k-mer, (3) create a chimera with another randomly selected sequences, and (4) randomly rearrange blocks within the

sequence.

In Round 3, we implemented motif-centric perturbations based on our reference list of 8 TFs (CRX, GFI1, MAZ, MEF2D, NeuroD1,

NRL, RORB, and RAX),20 plus ELF1 and TBX20. We computed the predicted occupancy with m=9 for these TFs, defined spacer sites

as positions with total predicted occupancy below 0.5, and then randomly selected one of the following operations: (1) sample from

one of the position weight matrices and insert that motif into a random spacer region, (2) select an occupied site and scramble it to an

unoccupied state, (3) select an occupied site and replace it with a motif sampled from a different position weight matrix, (4) select an

occupied site and swap it with a length-matched spacer region. We generated additional candidate sequences by systematically

scrambling tiles of spacer regions. For Round 4we excluded ELF1 and TBX20 from themotif pool due to their very low representation

in the genomic sequences.

Filtering candidate perturbations
To filter out any candidate sequences that lack the general properties of photoreceptor CREs, we trained a k-mer SVM to classify rod

photoreceptor ATAC-seq peaks60 from the rest of the mouse genome. We used the central 300 bp of all 39,265 rod ATAC-seq peaks

as positives and selected an equal number of GC-matched sequences from the mm10 genome using the script nullseq_generate.py

from the gkmSVM package. We fit this model using LS-GKM122 with parameters -l 10 -k 6 -d 3 and five-fold cross-validation. We

assessed model performance using the AUROC (Figure S5). In each round of in silico mutagenesis, we kept perturbations that

had an LS-GKM score of 1 or greater; this score corresponds to a sequence that is beyond the maximum-margin hyperplane. Empir-

ically, this removed at least half of all perturbations in each cycle.

Active learning
Our machine learning models take a 164-bp sequence as input and predicts pðyijxÞ, the probability that the sequence belongs in the

-th activity bin, i = 1;.;4. Our objective is to determine which perturbations are themost uncertain to themodel. In Rounds 2, 3, and

4a, we used entropy uncertainty, which is quantified with Shannon entropy, SðxÞ = � P
i

pðyijxÞlog2 pðyijxÞ and reaches its maximum

when a classifier assigns equal probabilities of belonging to each class. In Round 4b, we usedmargin uncertainty, which is defined as

MðxÞ = 1 � ½pðby jxÞ � pðcy� jxÞ�, the difference in probability between the twomost likely outcomes, by andcy� . When by;cy� are equally

likely the term in brackets is zero, so the complement represents the uncertainty.

To provide intuition for the difference between Shannon entropy and margin uncertainty, consider three cases where by;cy� are

equally likely. In the first case, a model outputs ½0:25;0:25;0:25;0:25�, so S = 2 and M = 1. In the second case, a model outputs

½0:33; 0:33; 0:33; 0�; once again M = 1, but S = 1:6. In the third case, the output is ½0:5;0:5; 0;0� and M is still 1, but S = 1.

Thus, as the twomost likely classes becomemore distinguishable from the remaining classes, the entropy can dropwithout a change

in margin uncertainty.

In Rounds 2 and 3, we calculated probabilities with our SVM from the previous round. In Round 2, we sampled 4800 perturbations

with high entropy uncertainty. In Round 3, we sampled the 13,986 perturbations with the highest entropy uncertainty. We also

randomly sampled 6584 perturbations and 25 perturbations with high probability for each of the 4 classes (100 sequences total).

For Round 4, we calculated probabilities with our CNN trained in Round 3. In Round 4a, we sampled 96,190 perturbations with the

highest entropy uncertainty. In Round 4b, we sampled 18,000 perturbations with entropy uncertainty below 1.8 and high margin un-

certainty for silencers. Of these, 6000 were on the silencer side of the strong enhancer vs. silencer margin, 6000 were on the strong
Cell Systems 16, 1–15.e1–e6, January 15, 2025 e4
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enhancer side of the strong enhancer vs. silencer margin, and 6000 were on the silencer vs. inactive margin. Very few perturbations

were on the silencer vs. weak enhancer margin, so we did not sample on this margin. We chose an entropy uncertainty cutoff of 1.8

because this approximately corresponds to probabilities of ½0:32;0:32;0:32;0:05�, which represents cases where one outcome is un-

likely but the rest are equally likely. For all data batches, the number of sequences sampled is larger thanwhat is listed in themain text

because not all sequences were recovered in the MPRA experiments.

Selection of sequences predicted with high confidence
During Round 4, we ranked in silico-generated sequences by their most probable class as predicted by the CNN classifier. We

selected 500 sequences with the highest probability of being a strong enhancer, 500 high-probability weak enhancers, 500 high-

probability inactive sequences, and 1500 high-probability silencers.

Additional perturbation datasets
To find inactive sequences whose motif content was similar to the strong enhancers in Figure 4, we selected previously tested

inactive genomic sequences with the same number and identity of motifs, and selected the sequence with the highest 6-mer

similarity. We partitioned the sequences into non-overlapping blocks based on the motif positions in the inactive and strong

enhancer sequences. Then we swapped blocks individually and in combinations of either motif blocks or spacer blocks (but

not both); we also moved a motif internally from its native position to its corresponding position in the other sequence before

swapping blocks. Last, we moved the non-CRX motif in the strong enhancer to every other position that did not overlap with

the CRX motif.

To test the effects of NRL, NeuroD1, RORB, and MAZ motifs, we scrambled all instances of these motifs in all strong enhancers in

the Round 1 genomic library. Motifs were scrambled either individually or in combination with mutating all CRX motifs via point mu-

tation. We assayed these sequences in the same library as Round 3 (Table S1).

Regression model
To perform model interpretation, we trained a new regression CNN that predicts log2 MPRA activity directly from sequence. We up-

dated our architecture to include residual skip connections, dilated convolutions, and first-layer exponential activation.123 This archi-

tecture consists of three ‘‘convolution blocks,’’ a fully connected layer, and a final single-output node. A convolutional block consists

of a convolutional layer, multiple dilated convolutional layers surrounded by a residual skip connection, and then max-pooling. We

trained the model after Round 4 and used the same validation set to tune hyperparameters. We trained the model using the Adam

optimizer (learning rate = 0.0003, weight decay = 10-6), mean squared error as a loss function, and a batch size of 128. We fit the

model for 50 epochs with early stopping (patience = 10, metric = Spearman) and a custom learning rate scheduler (patience = 3,

decay = 0.2). Our final model was selected by training 20 initializations and selecting the one with the highest PCC on the validation

set.

Motif analysis
All motif analyses were performed using our predicted occupancy framework16,124 and m=9. At this value, a motif with a relative KD =

3% of the consensus site has 50% probability of being occupied. To identify individual motifs, we compute the predicted occupancy

of a TF and identify the positions where the predicted occupancy is at least 0.5. To identify the total number of motifs for a TF, we sum

the predicted occupancy across every position of the sequence.

In silico global importance analysis
We used Global Importance Analysis84 to predict the global effect of specific sequence features on MPRA activity. We generated a

background distribution by dinucleotide shuffling each of our 4658 genomic sequences and predicting their activity with our regres-

sionmodel. Then, we injected a fixed sequence feature in a fixed location of every sequence in our background distribution, predicted

their activity with the samemodel, and subtracted the predictions for the background distribution. The result is the predicted log2 fold

change of a sequence feature on MPRA activity, and when averaged across all sequences, represents the global importance of that

feature.

Nucleotide contribution scores
We predicted the contribution of each nucleotide to regulatory activity by calculating a sequence’s saliency map from the regression

CNN followed by the Majdandzic correction method.125 This method has been shown to reduce noise in feature attribution maps.

Motif importances scores were obtained by summing across all nucleotides that overlap predicted occupancy hits.

Analysis of MPRA data from K562 cells
We downloaded an existing large-scale K562 dataset.89 Data were obtained from Supplementary Tables 3 and 4 from that work. We

selected sequences that were observed in multiple replicates, had a sample coefficient of variation less than or equal to 0.75, be-

longed to the ‘‘putative enhancer’’ category, and were in the positive strand orientation. Among these sequences, we defined the

top 20% as positives, the bottom 50% as negatives, and removed sequences in the 50-80th percentile.
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We split the data into 10 folds based on chromosomal origin so that each fold contained approximately 10% of the data. The

folds are:
Fold Chromosomes

1 chr1

2 chr2, chr14

3 chr4, chr7

4 chr3, chr15

5 chr5, chr19, chr21

6 chr6, chrX, chrY

7 chr8, chr9

8 chr10, chr11

9 chr12, chr13, chr16

10 chr17, chr20, chr22
We used the same CNN architecture as our regression model, but using 230 bp input and adding a sigmoid activation function to

the output to convert it into a binary classifier. We trained all models using the Adam optimizer (learning rate = 0.0001, weight decay =

10-6), binary cross-entropy as a loss function, a batch size of 128, and 100 epochs with early stopping (patience = 15, metric = AUPR)

and the default learning rate scheduler in Selene. We kept the model with the lowest loss on the held-out validation set for evaluating

on the test set and performing additional rounds of sampling.

Statistics and data visualization
All statistical analyses and data visualization were performed in Pythonwith Numpy,126 Scipy,127 Pandas,128Matplotlib,129 and Logo-

maker.112 All correlations were calculated using the functions scipy.stats.pearsonr and scipy.stats.spearmanr. In all box plots, the

line denotes the median, the box represents the interquartile range (25th to 75th percentile), and whiskers extend to 1.5x the inter-

quartile range. Violin plots cover the same range as box plots, with any outliers shown as translucent dots.
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